INTERNATIONAL ISO/IEC
STANDARD 23271

Third edition
2012-02-15

Information technology — Common
Language Infrastructure (CLI)

Technologies de l'information — Infrastructure commune de langage
(ICL)

Reference number
ISO/IEC 23271:2012(E)

2 . © ISO/IEC 2012

ISO/IEC 23271:2012(E)

COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2012

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.

ISO copyright office

Case postale 56 ¢ CH-1211 Geneva 20

Tel. +4122749 01 11

Fax + 4122749 09 47

E-mail copyright@iso.org

Web www.iso.org
Published in Switzerland

ii © ISO/IEC 2012 — All rights reserved

ISO/IEC 23271:2012(E)

Table of Contents

Foreword XXi
1.1 Scope 1
1.2 Conformance 2
1.3 Normative references 3
1.4 Conventions 5
[.4.1 Organization 5
1.4.2 Informative text 5
1.5 Terms and definitions 6
1.6 Overview of the Common Language Infrastructure 9
I.6.1 Relationship to type safety 9
1.6.2 Relationship to managed metadata-driven execution 10
[.6.2.1 Managed code 10
[.6.2.2 Managed data 11
[.6.2.3 Summary 11
1.7 Common Language Specification 12
[.7.1 Introduction 12
1.7.2 Views of CLS compliance 12
[.7.2.1 CLS framework 12
1.7.2.2 CLS consumer 13
[.7.2.3 CLS extender 13
1.7.3 CLS compliance 14
1.7.3.1 Marking items as CLS-compliant 14
1.8 Common Type System 16
1.8.1 Relationship to object-oriented programming 19
1.8.2 Values and types 19
[.8.2.1 Value types and reference types 19
[.8.2.2 Built-in value and reference types 20
[.8.2.3 Classes, interfaces, and objects 21
[.8.2.4 Boxing and unboxing of values 21
[.8.2.5 Identity and equality of values 22
1.8.3 Locations 23
1.8.3.1 Assignment-compatible locations 23
1.8.3.2 Coercion 23
1.8.3.3 Casting 24

© ISO/IEC 2012 — All rights reserved. iii

ISO/IEC 23271:2012(E)

1.8.4
1.8.4.
1.8.4.
1.8.4.
1.8.4.

1.8.5
[.8.5.1
1.8.5.2
1.8.5.3

1.8.6
[.8.6.1

1.8.7
[.8.7.1
[.8.7.2
1.8.7.3

[.8.8

[.8.9

—

A W

—_

O o0 9 O »n K~ W

e e e e e
0 0 0 0 O X 0O 0O 0 XX 0

O v v v vV v v v vV VvV O

—_—
—_ O

1.8.10
1.8.10.1
1.8.10.2
1.8.10.3
1.8.10.4

[.8.11
[.8.11.1
[.8.11.2
[.8.11.3
[.8.11.4
I.8.11.5

Type members

Fields, array elements, and values
Methods

Static fields and static methods
Virtual methods

Naming

Valid names

Assemblies and scoping

Visibility, accessibility, and security

Contracts
Signatures

Assignment compatibility

Assignment compatibility for signature types

Assignment compatibility for location types

General assignment compatibility
Type safety and verification
Type definers
Array types
Unmanaged pointer types
Delegates
Interface type definition
Class type definition
Object type definitions
Value type definition
Type inheritance
Object type inheritance
Value type inheritance
Interface type derivation
Member inheritance
Field inheritance
Method inheritance
Property and event inheritance
Hiding, overriding, and layout
Member definitions
Method definitions
Field definitions
Property definitions
Event definitions

Nested type definitions

© ISO/IEC 2012 — All rights reserved.

24
24
24
25
25
25
25
26
27
30
30
34
37
38
39
39
39
40
41
41
42
43
44
47
47
47
48
48
48
48
48
49
49
50
50
51
51
52
52

1.9
1.9.1
1.9.2

1.9.2.1

1.9.2.2
1.9.3
1.9.4
1.9.5
1.9.6
1.9.7
1.9.8
1.9.9

1.10

ISO/IEC 23271:2012(E)

Metadata

Components and assemblies
Accessing metadata

Metadata tokens

Member signatures in metadata
Unmanaged code

Method implementation metadata
Class layout

Assemblies: name scopes for types
Metadata extensibility

Globals, imports, and exports

Scoped statics

Name and type rules for the Common Language

Specification

[.10.1
[.10.2
1.10.3
[.10.3.
[.10.3.
[.10.3.
[.10.4
I1.10.5
I.10.6
1.10.7
1.10.7.
1.10.7.
1.10.7.
1.10.7.
1.10.7.
1.10.7.

1.11

1.12
I.12.1
1201,
1201,
121
1201,
1201,
1201,

i e e e e

> NV R U VORI O

—

AN W

Identifiers

Overloading

Operator overloading
Unary operators
Binary operators
Conversion operators

Naming patterns

Exceptions

Custom attributes

Generic types and methods
Nested type parameter re-declaration
Type names and arity encoding
Type constraint re-declaration
Constraint type restrictions
Frameworks and accessibility of nested types

Frameworks and abstract or virtual methods
Collected Common Language Specification rules

Virtual Execution System
Supported data types
Native size: native int, native unsigned int, O and &
Handling of short integer data types
Handling of floating-point data types
CIL instructions and numeric types
CIL instructions and pointer types

Aggregate data

© ISO/IEC 2012 — All rights reserved.

53
53
53
54
54
54
54
55
55
56
57
58

59
59
59
60
60
61
62
62
63
63
64
64
65
66
67
67
68

69

72
72
73
74
75
76
77
78

ISO/IEC 23271:2012(E)

1.12.2 Module information 81
[.12.3 Machine state 81
[.12.3.1 The global state 81
1.12.3.2 Method state 82
1.12.4 Control flow 85
1.12.4.1 Method calls 86
1.12.4.2 Exception handling 89
I.12.5 Proxies and remoting 99
I.12.6 Memory model and optimizations 100
[.12.6.1 The memory store 100
[.12.6.2 Alignment 100
[.12.6.3 Byte ordering 100
[.12.6.4 Optimization 100
[.12.6.5 Locks and threads 101
[.12.6.6 Atomic reads and writes 102
1.12.6.7 Volatile reads and writes 102
1.12.6.8 Other memory model issues 103
1.1 Introduction 105
1.2 Overview 106
1.3 Validation and verification 107
1.4 Introductory examples 108
11.4.1 “Hello world!” 108
11.4.2 Other examples 108
11.5 General syntax 109
II.5.1 General syntax notation 109
I1.5.2 Basic syntax categories 109
11.5.3 Identifiers 110
I1.5.4 Labels and lists of labels 111
I1.5.5 Lists of hex bytes 111
11.5.6 Floating-point numbers 111
11.5.7 Source line information 112
11.5.8 File names 112
11.5.9 Attributes and metadata 112
I1.5.10 ilasm source files 112
11.6 Assemblies, manifests and modules 114
11.6.1 Overview of modules, assemblies, and files 114
II.6.2 Defining an assembly 115
11.6.2.1 Information about the assembly (AsmDecl) 115

Vi © ISO/IEC 2012 — All rights reserved.

ISO/IEC 23271:2012(E)

11.6.2.2 Manifest resources 118
11.6.2.3 Associating files with an assembly 118
11.6.3 Referencing assemblies 118
11.6.4 Declaring modules 119
I1.6.5 Referencing modules 120
11.6.6 Declarations inside a module or assembly 120
11.6.7 Exported type definitions 120
11.6.8 Type forwarders 121
1.7 Types and signatures 122
11.7.1 Types 122
I1.7.1.1 modreq and modopt 123
11.7.1.2 pinned 123
11.7.2 Built-in types 124
11.7.3 References to user-defined types (TypeReference) 124
11.7.4 Native data types 125
1.8 Visibility, accessibility and hiding 127
I1.8.1 Visibility of top-level types and accessibility of nested types 127
11.8.2 Accessibility 127
I1.8.3 Hiding 127
11.9 Generics 128
11.9.1 Generic type definitions 128
11.9.2 Generics and recursive inheritance graphs 129
11.9.3 Generic method definitions 130
11.9.4 Instantiating generic types 131
I1.9.5 Generics variance 132
I1.9.6 Assignment compatibility of instantiated types 132
11.9.7 Validity of member signatures 133
11.9.8 Signatures and binding 134
11.9.9 Inheritance and overriding 135
11.9.10 Explicit method overrides 136
11.9.11 Constraints on generic parameters 137
11.9.12 References to members of generic types 138
11.10 Defining types 139
I1.10.1 Type header (ClassHeader) 139
I1.10.1.1 Visibility and accessibility attributes 140
I1.10.1.2 Type layout attributes 141
I1.10.1.3 Type semantics attributes 141
I1.10.1.4 Inheritance attributes 142

© ISO/IEC 2012 — All rights reserved. vii

ISO/IEC 23271:2012(E)

I1.10.1.
I1.10.1.
I1.10.1.
I1.10.2
I1.10.3
I1.10.3.
I1.10.3.
I1.10.3.
I1.10.3.
11.10.4
I1.10.5
I1.10.5.
I1.10.5.
I1.10.5.
I1.10.6
I1.10.7
I1.10.8

11.11

11.12
I1.12.1
I1.12.2

I1.12.2.

11.13
II.13.1
I1.13.2
I1.13.3

11.14
I1.14.1
I1.14.2
11.14.3
I1.14.4
11.14.4.
11.14.4.
I1.14.5
II.14.6
II.14.6.
II.14.6.
II.14.6.

viii

5

7

—

1

1
2

1
2
3

Interoperation attributes
Special handling attributes
Generic parameters (GenPars)
Body of a type definition
Introducing and overriding virtual methods
Introducing a virtual method
The .override directive
Accessibility and overriding
Impact of overrides on derived classes
Method implementation requirements
Special members
Instance constructor
Instance finalizer
Type initializer
Nested types
Controlling instance layout

Global fields and methods
Semantics of classes

Semantics of interfaces
Implementing interfaces
Implementing virtual methods on interfaces

Interface Implementation Examples

Semantics of value types
Referencing value types
Initializing value types

Methods of value types

Semantics of special types
Vectors
Arrays
Enums
Pointer types
Unmanaged pointers
Managed pointers
Method pointers
Delegates
Delegate signature compatibility
Synchronous calls to delegates

Asynchronous calls to delegates

© ISO/IEC 2012 — All rights reserved.

142
142
143
146
147
147
147
148
149
150
150
150
151
151
153
153
154

156

157
157
157
159

162
163
163
164

166
166
166
168
169
170
171
171
172
173
174
175

11.15
I1.15.1
IT1.15.1.
I1.15.1.2
I1.15.1.3
I1.15.1.4
I1.15.2
I1.15.3
II.15.4
I1.15.4.1
I1.15.4.2
I1.15.4.3
I1.15.4.4
I1.15.4.5
II.15.5
I1.15.5.1
I1.15.5.2
I1.15.5.3
I1.15.5.4

—

11.16
I1.16.1
II.16.1.1
II.16.1.
II.16.1.
II.16.1.
II.16.2
I1.16.3
I1.16.3.1
I1.16.3.2
II.16.4
11.16.4.1
I1.16.5
I1.16.5.1

E- VS I S

11.17

11.18

11.19
II.19.1
I1.19.2

Defining, referencing, and calling methods
Method descriptors
Method declarations
Method definitions
Method references
Method implementations
Static, instance, and virtual methods
Calling convention
Defining methods
Method body
Predefined attributes on methods
Implementation attributes of methods
Scope blocks
vararg methods
Unmanaged methods
Method transition thunks
Platform invoke
Method calls via function pointers

Data type marshaling

Defining and referencing fields
Attributes of fields
Accessibility information
Field contract attributes
Interoperation attributes
Other attributes
Field init metadata
Embedding data in a PE file
Data declaration
Accessing data from the PE file
Initialization of non-literal static data
Data known at link time
Data known at load time

Data known at run time
Defining properties
Defining events

Exception handling
Protected blocks
Handler blocks

© ISO/IEC 2012 — All rights reserved.

ISO/IEC 23271:2012(E)

177
177
177
177
177
177
177
178
179
180
182
184
186
186
187
187
188
189
189

190
190
191
191
191
192
192
193
193
194
194
194
195
195

196

198

201
201
201

ISO/IEC 23271:2012(E)

I1.19.3
I1.19.4
I1.19.5
I1.19.6

11.20

11.21

II.21.1

I1.21.2
I1.21.2.1
I1.21.2.2
11.21.2.3
I1.21.2.4
I1.21.2.5

11.22
I1.22.
I1.22.
I1.22.
I1.22.
I1.22.
I1.22.
I1.22.
I1.22.
I1.22.
I1.22.
I1.22.
I1.22.
11.22.
11.22.
11.22.
11.22.
11.22.
11.22.
11.22.
11.22.
11.22.
11.22.
11.22.
11.22.
11.22.

O 0 9 O »n B~ W N o~

[\ I NG R NG T NG N NS N N I e e e O e = T T =S =Y
WL A W N R, O O O N O N b W N = O

Catch blocks
Filter blocks
Finally blocks

Fault handlers
Declarative security

Custom attributes
CLS conventions: custom attribute usage
Attributes used by the CLI
Pseudo custom attributes
Custom attributes defined by the CLS
Custom attributes for security
Custom attributes for TLS

Custom attributes, various

Metadata logical format: tables
Metadata validation rules
Assembly : 0x20
AssemblyOS : 0x22
AssemblyProcessor : 0x21
AssemblyRef : 0x23
AssemblyRefOS : 0x25
AssemblyRefProcessor : 0x24
ClassLayout : 0xOF

Constant : 0x0B
CustomAttribute : 0x0C
DeclSecurity : 0x0E
EventMap : 0x12

Event : 0x14

ExportedType : 0x27

Field : 0x04

FieldLayout : 0x10
FieldMarshal : 0x0D
FieldRVA : 0x1D

File : 0x26

GenericParam : 0x2A
GenericParamConstraint : 0x2C
ImplMap : 0x1C
Interfacelmpl : 0x09
ManifestResource : 0x28

MemberRef : 0x0A

© ISO/IEC 2012 — All rights reserved.

202
202
203
203

204

205
205
205
206
207
207
207
208

209
210
211
212
212
212
213
213
214
216
216
218
220
220
222
223
225
226
227
227
228
229
230
231
231
232

11.22.2
11.22.2
11.22.2
11.22.2
11.22.3
11.22.3
11.22.3
11.22.3
11.22.3
11.22.3
11.22.3
11.22.3
11.22.3
11.22.3

11.23
I1.23.1
I1.23.
I1.23.
I1.23.
I1.23.
I1.23.
I1.23.
I1.23.
I1.23.

I1.23.1.
I1.23.1.
I1.23.1.
I1.23.1.
I1.23.1.
I1.23.1.
I.
I.

I1.23.
I1.23.
11.23.2

11.23.2.
11.23.2.
11.23.2.
11.23.2.
11.23.2.
11.23.2.

6
7
8
9
0
1
2
3
4
5
6
7
8
9

1.

1

1.

1

1.

MethodDef : 0x06
MethodImpl : 0x19
MethodSemantics : 0x18
MethodSpec : 0x2B
Module : 0x00
ModuleRef : 0x1A
NestedClass : 0x29
Param : 0x08
Property : Ox17
PropertyMap : 0x15
StandAloneSig : 0x11
TypeDef : 0x02
TypeRef : 0x01
TypeSpec : 0x1B

Metadata logical format: other structures
Bitmasks and flags

Values for AssemblyHashAlgorithm

Values for AssemblyFlags

Values for Culture

Flags for events [EventAttributes]

Flags for fields [FieldAttributes]

Flags for files [FileAttributes]

ISO/IEC 23271:2012(E)

Flags for Generic Parameters [GenericParamAttributes]

Flags for ImplMap [PInvokeAttributes]

Flags for ManifestResource [ManifestResourceAttributes]

Flags for methods [MethodAttributes]

Flags for methods [MethodImplAttributes]

Flags for MethodSemantics [MethodSemanticsAttributes]

Flags for params [ParamAttributes]
Flags for properties [PropertyAttributes]
Flags for types [TypeAttributes]
Element types used in signatures
Blobs and signatures

MethodDefSig

MethodRefSig

StandAloneMethodSig

FieldSig

PropertySig

LocalVarSig

© ISO/IEC 2012 — All rights reserved.

xi

233
236
237
238
239
239
240
240
241
242
243
243
247
248

249
249
249
249
249
250
250
251
251
251
252
252
253
253
253
254
254
255
257
259
260
261
262
262
263

ISO/IEC 23271:2012(E)

I1.23.
I1.23.
I1.23.
I1.23.
I1.23.
I1.23.
I1.23.
I1.23.
I1.23.
I1.23.

2.
2.
2.
2.

2
2
2
2
2
2

I1.23.3
11.23.4

11.24
I1.24.1

11.24.2

11.24.2.
11.24.2.
11.24.2.
11.24.2.
11.24.2.
11.24.2.

11.25
I1.25.1

I1.25.2

11.25.2.
11.25.2.
11.25.2.

I1.25.3

I1.25.3.
I1.25.3.
I1.25.3.

I1.25.4

11.25.4.
11.25.4.
11.25.4.
11.25.4.
11.25.4.
11.25.4.

1.1

xii

1

7 CustomMod

8 TypeDefOrRefOrSpecEncoded
9 Constraint

10 Param

11 RetType

.12 Type

.13 ArrayShape

.14 TypeSpec

.15 MethodSpec

.16 Short form signatures

Custom attributes

Marshalling descriptors

Metadata physical layout
Fixed fields
File headers
Metadata root
Stream header
#Strings heap
#US and #Blob heaps
#GUID heap

#~ stream

File format extensions to PE
Structure of the runtime file format
PE headers
MS-DOS header
PE file header
PE optional header
Section headers
Import Table and Import Address Table (IAT)
Relocations
CLI header
Common Intermediate Language physical layout
Method header type values
Tiny format
Fat format
Flags for method headers
Method data section

Exception handling clauses

Introduction

© ISO/IEC 2012 — All rights reserved.

263
264
264
264
265
265
265
266
266
267
267
269

271
271
271
271
272
272
272
272
273

277
2717
2717
278
278
279
281
282
282
283
284
285
285
285
285
286
286

289

ISO/IEC 23271:2012(E)

II1.1.1 Data types 289
Ir.1.1.1 Numeric data types 290
I1.1.1.2 Boolean data type 292
II1.1.1.3 Character data type 292
I11.1.1.4 Object references 292
II1.1.1.5 Runtime pointer types 292
II1.1.2 Instruction variant table 294
Ir.1.2.1 Opcode encodings 294
II1.1.3 Stack transition diagram 300
II1.1.4 English description 301
II1.1.5 Operand type table 301
II1.1.6 Implicit argument coercion 304
I1.1.7 Restrictions on CIL code sequences 305
II1.1.7.1 The instruction stream 306
I1.1.7.2 Valid branch targets 306
I11.1.7.3 Exception ranges 306
I11.1.7.4 Must provide maxstack 307
I11.1.7.5 Backward branch constraints 307
I11.1.7.6 Branch verification constraints 307
I11.1.8 Verifiability and correctness 307
I11.1.8.1 Flow control restrictions for verifiable CIL 308
II1.1.9 Metadata tokens 312
II1.1.10 Exceptions thrown 313
1.2 Prefixes to instructions 314
I11.2.1 constrained. — (prefix) invoke a member on a value of a
variable type 315
111.2.2 no. — (prefix) possibly skip a fault check 317
I11.2.3 readonly. (prefix) — following instruction returns a controlled-
mutability managed pointer 318
111.2.4 tail. (prefix) — call terminates current method 319
I11.2.5 unaligned. (prefix) — pointer instruction might be unaligned 320
I11.2.6 volatile. (prefix) — pointer reference is volatile 321
1.3 Base instructions 322
I11.3.1 add - add numeric values 323
I11.3.2 add.ovf.<signed> — add integer values with overflow check 324
I11.3.3 and — bitwise AND 325
I11.3.4 arglist — get argument list 326
I11.3.5 beq.<length> — branch on equal 327
I11.3.6 bge.<length> — branch on greater than or equal to 328

© ISO/IEC 2012 — All rights reserved. xiii

ISO/IEC 23271:2012(E)

I11.3.7 bge.un.<length> — branch on greater than or equal to,
unsigned or unordered

I11.3.8 bgt.<length> — branch on greater than

I11.3.9 bgt.un.<length> — branch on greater than, unsigned or
unordered 331

I11.3.10 ble.<length> — branch on less than or equal to

I11.3.11 ble.un.<length> — branch on less than or equal to, unsigned or
unordered 333

I11.3.12 blt.<length> — branch on less than

I11.3.13 blt.un.<length> — branch on less than, unsigned or unordered
I11.3.14 bne.un<length> — branch on not equal or unordered

II1.3.15 br.<length> — unconditional branch

I11.3.16 break — breakpoint instruction

I11.3.17 brfalse.<length> — branch on false, null, or zero

I11.3.18 brtrue.<length> — branch on non-false or non-null

I11.3.19 call — call a method

I11.3.20 calli — indirect method call

I11.3.21 ceq - compare equal

I11.3.22 cgt — compare greater than

II1.3.23 cgt.un — compare greater than, unsigned or unordered
I11.3.24 ckfinite — check for a finite real number

I11.3.25 clt — compare less than

I11.3.26 clt.un — compare less than, unsigned or unordered

I11.3.27 conv.<to type> — data conversion

I11.3.28 conv.ovf.<to type> — data conversion with overflow detection

I11.3.29 conv.ovf.<to type>.un — unsigned data conversion with
overflow detection

I1I1.3.30 cpblk — copy data from memory to memory
I11.3.31 div — divide values

I11.3.32 div.un — divide integer values, unsigned
I11.3.33 dup — duplicate the top value of the stack
I11.3.34 endfilter — end exception handling filter clause

I11.3.35 endfinally — end the finally or fault clause of an exception
block 359

I11.3.36 initblk — initialize a block of memory to a value
I11.3.37 jmp — jump to method

I11.3.38 Idarg.<length> — load argument onto the stack
I11.3.39 Idarga.<length> — load an argument address
I11.3.40 Idc.<type> - load numeric constant

I11.3.41 Idftn — load method pointer

I11.3.42 Idind.<type> — load value indirect onto the stack

Xiv © ISO/IEC 2012 — All rights reserved.

329
330

332

334
335
336
337
338
339
340
341
343
345
346
347
348
349
350
351
352

353
354
355
356
357
358

360
361
362
363
364
365
366

ISO/IEC 23271:2012(E)

I11.3.43 Idloc - load local variable onto the stack 368
I11.3.44 Idloca.<length> — load local variable address 369
I11.3.45 Idnull — load a null pointer 370
I11.3.46 leave.<length> — exit a protected region of code 371
I11.3.47 localloc — allocate space in the local dynamic memory pool 372
I11.3.48 mul — multiply values 373
I11.3.49 mul.ovf.<type> — multiply integer values with overflow check 374
III.3.50 neg — negate 375
II1.3.51 nop — no operation 376
I11.3.52 not — bitwise complement 377
I11.3.53 or — bitwise OR 378
II1.3.54 pop — remove the top element of the stack 379
I11.3.55 rem — compute remainder 380
I11.3.56 rem.un — compute integer remainder, unsigned 381
II1.3.57 ret — return from method 382
I11.3.58 shl — shift integer left 383
I11.3.59 shr — shift integer right 384
I11.3.60 shr.un — shift integer right, unsigned 385
I11.3.61 starg.<length> — store a value in an argument slot 386
I11.3.62 stind.<type> — store value indirect from stack 387
I11.3.63 stloc — pop value from stack to local variable 388
I11.3.64 sub — subtract numeric values 389

I11.3.65 sub.ovf.<type> — subtract integer values, checking for
overflow 390

I11.3.66 switch — table switch based on value 391
I11.3.67 xor — bitwise XOR 392
1.4 Object model instructions 393
I11.4.1 box — convert a boxable value to its boxed form 393
111.4.2 callvirt — call a method associated, at runtime, with an object 395
I11.4.3 castclass — cast an object to a class 397
I11.4.4 cpobj — copy a value from one address to another 398
I11.4.5 initobj — initialize the value at an address 399
II1.4.6 isinst — test if an object is an instance of a class or interface 400
111.4.7 Idelem — load element from array 401
111.4.8 Idelem.<type> — load an element of an array 402
111.4.9 Idelema — load address of an element of an array 404
I11.4.10 Idfld — load field of an object 405
I11.4.11 Idflda — load field address 406
I11.4.12 Idlen — load the length of an array 407
I11.4.13 Idobj — copy a value from an address to the stack 408

© ISO/IEC 2012 — All rights reserved. XV

ISO/IEC 23271:2012(E)

II1.4.14
II1.4.15
II1.4.16
I11.4.17
I11.4.18
I11.4.19
I11.4.20
I11.4.21
I11.4.22
I11.4.23
I11.4.24
I11.4.25
I11.4.26
I11.4.27
II1.4.28
I11.4.29
I11.4.30
II1.4.31
II1.4.32
I11.4.33

V.1

V.2
Iv.2.1
Iv.2.2
Iv.2.3

V.3
Iv.3.1
Iv.3.2

V.4
Iv.4.1

IvV.4.1.
IvV.4.1.
IV.4.1.
IV.4.1.
Iv.4.1.
Iv.4.1.
Iv.4.1.
IvV.4.1.

XVi

[c BN BN Y, B - VO R)

Idsfld — load static field of a class
Idsflda — load static field address

Idstr — load a literal string

Idtoken — load the runtime representation of a metadata token

[dvirtftn — load a virtual method pointer

mkrefany — push a typed reference on the stack
newarr — create a zero-based, one-dimensional array
newobj — create a new object

refanytype — load the type out of a typed reference
refanyval — load the address out of a typed reference
rethrow — rethrow the current exception

sizeof — load the size, in bytes,of a type

stelem — store element to array

stelem.<type> — store an element of an array

stfld — store into a field of an object

stobj — store a value at an address

stsfld — store a static field of a class

throw — throw an exception

unbox — convert boxed value type to its raw form

unbox.any — convert boxed type to value
Overview

Libraries and Profiles
Libraries
Profiles

The relationship between Libraries and Profiles

The Standard Profiles
The Kernel Profile
The Compact Profile

Kernel Profile feature requirements
Features excluded from the Kernel Profile

Floating point

Non-vector arrays

Reflection

Application domains

Remoting

Vararg

Frame growth

Filtered exceptions

© ISO/IEC 2012 — All rights reserved.

409
410
411
412
413
414
415
416
419
420
421
422
423
424
426
427
428
429
430
431

433

434
434
434
435

436
436
436

437
437
437
437
437
438
438
438
438
438

ISO/IEC 23271:2012(E)

V.5 The standard libraries 439
Iv.5.1 General comments 439
Iv.5.2 Runtime infrastructure library 439
Iv.5.3 Base Class Library (BCL) 439
Iv.5.4 Network library 439
Iv.5.5 Reflection library 439
IV.5.6 XML library 439
Iv.5.7 Extended numerics library 440
Iv.5.8 Extended array library 440
Iv.5.9 Vararg library 440
IV.5.10 Parallel library 440
1V.6 Implementation-specific modifications to the system
libraries 442
Iv.7 The XML specification 443
Iv.7.1 Semantics 443
IvV.7.1.1 Value types as objects 451
Iv.7.1.2 Exceptions 451
Iv.7.2 XML signature notation issues 451
Iv.7.2.1 Serialization 451
1v.7.2.2 Delegates 451
1v.7.2.3 Properties 452
Iv.7.2.4 Nested types 452
V.1 Portable CILDB files 454
V.1.1 Encoding of integers 454
V.1.2 CILDB header 454
V.1.2.1 Version GUID 454
V.1.3 Tables and heaps 454
V.1.3.1 SymConstant table 455
V.1.3.2 SymDocument table 455
V.1.3.3 SymMethod table 455
V.1.3.4 SymSequencePoint table 456
V.1.3.5 SymScope table 456
V.1.3.6 SymVariable table 456
V.1.3.7 SymUsing table 457
V.1.3.8 SymMisc heap 457
V.1.3.9 SymString heap 457
V.1.4 Signatures 457
VI.Annex A Introduction 459

© ISO/IEC 2012 — All rights reserved. Xvii

ISO/IEC 23271:2012(E)

VI.Annex B Sample programs

VI.B.1 Mutually recursive program (with tail calls)

VI.B.2 Using value types

VI.B.3 Custom attributes

VI.B.4 Generics code and metadata
VI.B.4.1 ILAsm version
VI.B.4.2 C# version
VI.B.4.3 Metadata

VI.Annex C CIL assembler implementation

VI.C.1 ILAsm keywords

VI.C.2 CIL opcode descriptions

VI.C.3 Complete grammar

VI.C.4 Instruction syntax
VI.C.4.1 Top-level instruction syntax
VI.C.4.2 Instructions with no operand
VI.C.4.3 Instructions that refer to parameters or local variables
VI.C.4.4 Instructions that take a single 32-bit integer argument
VI.C.4.5 Instructions that take a single 64-bit integer argument
VI.C.4.6 Instructions that take a single floating-point argument
VI.C.4.7 Branch instructions
VI.C.4.8 Instructions that take a method as an argument
VI.C.4.9 Instructions that take a field of a class as an argument
VI.C.4.10 Instructions that take a type as an argument
VI.C.4.11 Instructions that take a string as an argument
VI.C.4.12 Instructions that take a signature as an argument
VI.C.4.13 Instructions that take a metadata token as an argument

VI.C.4.14 Switch instruction

VI.Annex

VI.Annex
VI.E.1
VI.E.2
VI.E.3

VI.Annex
VI.F.1
VI.F.2
VI.F.3
VI.F.4

VI.F.4.1

XViii

D Class library design guidelines

E Portability considerations

Uncontrollable behavior

Language- and compiler-controllable behavior

Programmer-controllable behavior

F Imprecise faults
Instruction reordering

Inlining

Finally handlers still guaranteed once a try block is entered

Interleaved calls

Rejected notions for fencing

© ISO/IEC 2012 — All rights reserved.

460
460
461
463
466
466
467
467

469
469
481
492
507
508
508
509
510
510
510
511
511
511
511
512
512
512
513

514

515
515
515
515

517
517
517
517
518
518

VI.F.5 Examples

VI.F.5.1 Hoisting checks out of a loop
VI.F.5.2 Vectorizing a loop

VI.F.5.3 Autothreading a loop

VI.Annex G Parallel library
VI.G.1 Considerations
VI.G.2 ParallelFor

VI.G.3 ParallelForEach
VI.G.4 ParallelWhile
VI.G.5 Debugging

Index

© ISO/IEC 2012 — All rights reserved.

ISO/IEC 23271:2012(E)

Xix

518
519
519
519

521
521
521
521
522
522

523

Common Language Infrastructure (CLI)

Partition I:
Concepts and Architecture

ISO/IEC 23271:2012(E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International
Electrotechnical Commission) form the specialized system for worldwide standardization.
National bodies that are members of ISO or IEC participate in the development of International
Standards through technical committees established by the respective organization to deal with
particular fields of technical activity. ISO and IEC technical committees collaborate in fields of
mutual interest. Other international organizations, governmental and non-governmental, in
liaison with ISO and IEC, also take part in the work. In the field of information technology, ISO
and IEC have established a joint technical committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives,
Part 2.

The main task of the joint technical committee is to prepare International Standards. Draft
International Standards adopted by the joint technical committee are circulated to national bodies
for voting. Publication as an International Standard requires approval by at least 75 % of the
national bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the
subject of patent rights. ISO and IEC shall not be held responsible for identifying any or all such
patent rights.

ISO/IEC 23271 was prepared by Ecma International (as ECMA-335) and was adopted, under a
special “fast-track procedure”, by Joint Technical Committee ISO/IEC JTC 1, Information
technology, in parallel with its approval by national bodies of ISO and IEC.

This third edition cancels and replaces the second edition (ISO/IEC 23271:2006), which has been
technically revised.

The following features have been added, extended or clarified in the Standard:

e The presentation of the rules for assignment compatibility (§1.8.7, §111.1.8.1.2.3) has
been extensively revised to a more precise and clearer relation-based format.

o The presentation of the verification rules for many IL instructions has been revised to
be more precise and clearer by building upon the revisions to the presentation of
assignment compatibility.

e The presentation of delegate signature compatibility has been revised along the same
lines as assignment compatibility.

e The verification rules for the IL newobj instruction have been extended to cover
general delegate creation.

e The dispatch rules for variance (§11.12.2) have been extended to define resolutions for
the ambiguities that can arise.

e Type forwarders have been added to support the relocation of types between libraries
(§1L.6.8)

The following changes of behavior have been made to the Standard:

e The semantics of variance has been redefined making it a core feature of the CLI. In
the previous edition of the Standard variance could be ignored by languages not
wishing to support it (§1.1.8); as exact type matches always took precedence over
matches-by-variance. In this edition the dispatch rules for interfaces (§IL.12.2) allow a
match-by-variance to take precedence over an exact match, so all language

© ISO/IEC 2012 — All rights reserved. XXi

ISO/IEC 23271:2012(E)

XXii

implementation targeting the CLI must be aware of the behavior even if it is not

supported in the language (§1.1.8).

Additional requirements on ilasm to metadata conversion. The left-to-right order of
interfaces listed in a type header (§11.10.2) must now be preserved as a top-to-bottom
order in the Interfacelmpl table (§11.22.23); and the top-to-bottom of method
definitions (§11.10.2, §11.25) must now be preserved as a top-to-bottom order in the
MethodDef table (§11.22.26). Both these additional requirements are required to

support the revised variance semantics.

System.Math and System.Double have been modified to better conform to IEEE (see

Partition IV and IEC 60559:1989)

The following types have been added to the Standard or have been significantly updated (*
represents an update).

Type Library
System.Action BCL
System.Action' 1<-T>* ... System.Action'8<-T1..-T8> BCL
System.Comparison’ 1 <-T>* BCL
System.Converter 2<-T,+U>* BCL
System.IComparable’ 1<-T>* BCL
System.Predicate’ 1<-T>* BCL
System.Collections.Generic.IComparer’ 1 <-T>* BCL
System.Collections.Generic.IEnumerable’ | <+T>* BCL
System.Collections.Generic.IEqualityComparer’ 1 <-T>* BCL
System.Guid BCL
System.MulticastDelegate BCL

System.Reflection.CallingConventions

Runtime Infrastructure

System.Runtime.InteropServices.GuidAttribute

Runtime Infrastructure

System.Func'1<+TResult>...System.Func'9<-T1..-T§, +TResult> BCL
System.Collections.Generic.Comparer' 1<T> BCL
System.Collections.Generic.EqualityComparer’ 1 <T> BCL
System.Collections.Generic.ISet" 1<T> BCL
System.Collections.Generic.LinkedList' 1 <T> BCL
System.Collections.Generic.LinkedList" 1 <T>.Enumerator BCL
System.Collections.Generic.LinkedListNode' 1<T> BCL
System.Collections.Generic.Queue’ 1<T> BCL
System.Collections.Generic.Stack 1 <T> BCL
System.Collections.Generic.Stack’ 1 <T>.Enumerator BCL
System.Collections.Stack BCL
System.DBNull BCL

System.Runtime.InteropServices.Marshal

Runtime Infrastructure

System.Runtime.InteropServices.SafeBuffer

Runtime Infrastructure

© ISO/IEC 2012 — All rights reserved.

ISO/IEC 23271:2012(E)

System.Runtime.InteropServices.SafeHandle Runtime Infrastructure
System.Threading. AutoResetEvent BCL
System.Threading. EventWaitHandle BCL
System.Threading.ManualResetEvent BCL
System.WeakReference BCL
System.Runtime.CompilerServices. TypeForwardedToAttribute BCL

System.Runtime.CompilerServices. TypeForwardedFromAttribute BCL

System.Threading. EventResetMode BCL
System.Runtime.InteropServices.DIllAttribute* Runtime Infrastructure
System.Math* BCL

One type, INullableValue, has been removed from the Standard. INullableValue is incompatible
with the semantics of boxing as defined in the previous edition of the Standard. The references to
it were included in error from an earlier draft and no implementations are known to have ever
included it.

Technical Report 89 (TR89), which was submitted during the third edition of this Ecma standard,
will no longer be part of the submission. TR89 specified a collection of generic types, to help
enhance inter-language interoperability, under consideration for inclusion in a future version of
the standard. That consideration has now occurred and TR89 has fulfilled its role. A selection of
the types covered in TR89 has been introduced into this edition of the standard. An

archive version of TR89 will continue to be available from Ecma.

The following companies and organizations have participated in the development of this
standard, and their contributions are gratefully acknowledged: Eiffel Software, Kahu Research,
Microsoft Corporation, Novell Corporation, Twin Roots. For previous editions, the following
companies and organizations are also acknowledged: Borland, Fujitsu Software Corporation,
Hewlett-Packard, Intel Corporation, IBM Corporation, IT University of Copenhagen, Jagger
Software Ltd., Monash University, Netscape, Phone.Com, Plum Hall, and Sun Microsystems.

© ISO/IEC 2012 — All rights reserved. xxiii

ISO/IEC 23271:2012(E)

1.1 Scope

This International Standard defines the Common Language Infrastructure (CLI) in which
applications written in multiple high-level languages can be executed in different system
environments without the need to rewrite those applications to take into consideration the unique
characteristics of those environments. This International Standard consists of the following parts:

Partition I: Concepts and Architecture — Describes the overall architecture of the CLI, and
provides the normative description of the Common Type System (CTS), the Virtual
Execution System (VES), and the Common Language Specification (CLS). It also
provides an informative description of the metadata.

Partition II: Metadata Definition and Semantics — Provides the normative description of
the metadata: its physical layout (as a file format), its logical contents (as a set of tables
and their relationships), and its semantics (as seen from a hypothetical assembler, ilasm).

Partition III: CIL Instruction Set — Describes the Common Intermediate Language (CIL)
instruction set.

Partition IV: Profiles and Libraries — Provides an overview of the CLI Libraries, and a
specification of their factoring into Profiles and Libraries. A companion file,
CLILibrary.xml, considered to be part of this Partition, but distributed in XML format,
provides details of each class, value type, and interface in the CLI Libraries.

Partition V: Debug Interchange Format — Describes a standard way to interchange
debugging information between CLI producers and consumers.

Partition VI: Annexes — Contains some sample programs written in CIL Assembly
Language (ILAsm), information about a particular implementation of an assembler, a
machine-readable description of the CIL instruction set which can be used to derive parts
of the grammar used by this assembler as well as other tools that manipulate CIL, a set of
guidelines used in the design of the libraries of Partition [V, and portability
considerations.

© ISO/IEC 2012 — All rights reserved. 1

ISO/IEC 23271:2012(E)

1.2 Conformance

A system claiming conformance to this International Standard shall implement all the normative
requirements of this standard, and shall specify the profile (see Partition IV Library — Profiles)
that it implements. The minimal implementation is the Kernel Profile. A conforming
implementation can also include additional functionality provided that functionality does not
prevent running code written to rely solely on the profile as specified in this standard. For
example, a conforming implementation can provide additional classes, new methods on existing
classes, or a new interface on a standardized class, but it shall not add methods or properties to
interfaces specified in this standard.

A compiler that generates Common Intermediate Language (CIL, see Partition IIT) and claims
conformance to this International Standard shall produce output files in the format specified in
this standard, and the CIL it generates shall be correct CIL as specified in this standard. Such a
compiler can also claim that it generates verifiable code, in which case, the CIL it generates shall
be verifiable as specified in this standard.

2 © ISO/IEC 2012 — All rights reserved.

ISO/IEC 23271:2012(E)

1.3 Normative references

[Note that many of these references are cited in the XML description of the class libraries.]

Extensible Markup Language (XML) 1.0 (Third Edition), 2004 February 4,
http://www.w3.0org/TR/2004/REC-xml-20040204/

Federal Information Processing Standard (FIPS 180-1), Secure Hash Standard (SHA-1), 1995,
April.

IEC 60559:1989, Binary Floating-point Arithmetic for Microprocessor Systems (previously
designated IEC 559:1989).

ISO 639, Codes for the representation of names of languages.

ISO 3166-1:2006, Codes for the representation of names of countries and their subdivisions —
Part 1: Country codes.

ISO/IEC 646:1991, Information technology — 1SO 7-bit coded character set for information
interchange

ISO/IEC 9899:1999, Programming languages — C.
ISO/IEC 10646, Information technology — Universal Coded Character Set (UCS).

ISO/IEC 11578:1996, Information technology — Open Systems Interconnection - Remote
Procedure Call (RPC).

ISO/IEC 14882:2011, Information technology — Programming languages — C++.
ISO/IEC 23270:2006, Information technology & Programming languages — C#.
RFC-768, User Datagram Protocol. J. Postel. 1980, August.

RFC-791, Darpa Internet Program Protocol Specification. 1981, September.

RFC-792, Internet Control Message Protocol. Network Working Group. J. Postel. 1981,
September.

RFC-793, Transmission Control Protocol. J. Postel. 1981, September.
RFC-919, Broadcasting Internet Datagrams. Network Working Group. J. Mogul. 1984, October.

RFC-922, Broadcasting Internet Datagrams in the presence of Subnets. Network Working
Group. J. Mogul. 1984, October.

RFC-1035, Domain Names - Implementation and Specification. Network Working Group. P.
Mockapetris. 1987, November.

RFC-1036, Standard for Interchange of USENET Messages, Network Working Group. M.
Horton and R. Adams. 1987, December.

RFC-1112. Host Extensions for IP Multicasting. Network Working Group. S. Deering 1989,
August.

RFC-1222. Advancing the NSFNET Routing Architecture. Network Working Group. H-W
Braun, Y. Rekhter. 1991 May. http://tools.ietf.org/html/rfc1222

RFC-1510, The Kerberos Network Authentication Service (V5). Network Working Group. J.
Kohl and C. Neuman. 1993, September.

RFC-1741, MIME Content Type for BinHex Encoded Files: Format. Network Working Group.
P. Faltstrom, D. Crocker, and E. Fair. 1994, December.

RFC-1764. The PPP XNS IDP Control Protocol (XNSCP). Network Working Group. S. Senum.
1995, March.

RFC-1766, Tags for the Identification of Languages. Network Working Group. H. Alvestrand.
1995, March.

RFC-1792. TCP/IPX Connection Mib Specification. Network Working Group. T. Sung. 1995,
April.

© ISO/IEC 2012 — All rights reserved. 3

http://www.w3.org/TR/2004/REC-xml-20040204/
http://tools.ietf.org/html/rfc1222

ISO/IEC 23271:2012(E)

RFC-2236. Internet Group Management Protocol, Version 2. Network Working Group. W.
Fenner. 1997, November.

RFC-2045, Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet
Message Bodies. Network Working Group. N. Freed. 1996, November.

RFC-2616, Hypertext Transfer Protocol -- HTTP/1.1. Network Working Group. R. Fielding, J.
Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee. 1999 June.
http://www.ietf.org/rfc/rfc2616.txt

RFC-2617, HTTP Authentication: Basic and Digest Access Authentication. Network Working
Group. J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence, P. Leach, A. Luotonen, and L.
Stewart. 1999 June, http://www.ictf.org/rfc/rfc2617.txt

The Unicode Consortium. The Unicode Standard, Version 4.0, defined by: The Unicode
Standard, Version 4.0 (Boston, MA, Addison-Wesley, 2003. ISBN 0-321-18578-1).

4 © ISO/IEC 2012 — All rights reserved.

http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2617.txt

	Foreword
	I.1 Scope
	I.2 Conformance
	I.3 Normative references

