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Foreword

ISO (the International Organization for Standardization) and IEC (the International
Electrotechnical Commission) form the specialized system for worldwide standardization.
National bodies that are members of ISO or IEC participate in the development of International
Standards through technical committees established by the respective organization to deal with
particular fields of technical activity. ISO and IEC technical committees collaborate in fields of
mutual interest. Other international organizations, governmental and non-governmental, in
liaison with ISO and IEC, also take part in the work. In the field of information technology, ISO
and IEC have established a joint technical committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives,
Part 2.

The main task of the joint technical committee is to prepare International Standards. Draft
International Standards adopted by the joint technical committee are circulated to national bodies
for voting. Publication as an International Standard requires approval by at least 75 % of the
national bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the
subject of patent rights. ISO and IEC shall not be held responsible for identifying any or all such
patent rights.

ISO/IEC 23271 was prepared by Ecma International (as ECMA-335) and was adopted, under a
special “fast-track procedure”, by Joint Technical Committee ISO/IEC JTC 1, Information
technology, in parallel with its approval by national bodies of ISO and IEC.

This third edition cancels and replaces the second edition (ISO/IEC 23271:2006), which has been
technically revised.

The following features have been added, extended or clarified in the Standard:

e The presentation of the rules for assignment compatibility (§1.8.7, §111.1.8.1.2.3) has
been extensively revised to a more precise and clearer relation-based format.

o The presentation of the verification rules for many IL instructions has been revised to
be more precise and clearer by building upon the revisions to the presentation of
assignment compatibility.

e The presentation of delegate signature compatibility has been revised along the same
lines as assignment compatibility.

e The verification rules for the IL newobj instruction have been extended to cover
general delegate creation.

e The dispatch rules for variance (§11.12.2) have been extended to define resolutions for
the ambiguities that can arise.

e Type forwarders have been added to support the relocation of types between libraries
(§1L.6.8)

The following changes of behavior have been made to the Standard:

e The semantics of variance has been redefined making it a core feature of the CLI. In
the previous edition of the Standard variance could be ignored by languages not
wishing to support it (§1.1.8); as exact type matches always took precedence over
matches-by-variance. In this edition the dispatch rules for interfaces (§IL.12.2) allow a
match-by-variance to take precedence over an exact match, so all language
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implementation targeting the CLI must be aware of the behavior even if it is not

supported in the language (§1.1.8).

Additional requirements on ilasm to metadata conversion. The left-to-right order of
interfaces listed in a type header (§11.10.2) must now be preserved as a top-to-bottom
order in the Interfacelmpl table (§11.22.23); and the top-to-bottom of method
definitions (§11.10.2, §11.25) must now be preserved as a top-to-bottom order in the
MethodDef table (§11.22.26). Both these additional requirements are required to

support the revised variance semantics.

System.Math and System.Double have been modified to better conform to IEEE (see

Partition IV and IEC 60559:1989)

The following types have been added to the Standard or have been significantly updated (*
represents an update).

Type Library
System.Action BCL
System.Action' 1<-T>* ... System.Action'8<-T1..-T8> BCL
System.Comparison’ 1 <-T>* BCL
System.Converter 2<-T,+U>* BCL
System.IComparable’ 1<-T>* BCL
System.Predicate’ 1<-T>* BCL
System.Collections.Generic.IComparer’ 1 <-T>* BCL
System.Collections.Generic.IEnumerable’ | <+T>* BCL
System.Collections.Generic.IEqualityComparer’ 1 <-T>* BCL
System.Guid BCL
System.MulticastDelegate BCL

System.Reflection.CallingConventions

Runtime Infrastructure

System.Runtime.InteropServices.GuidAttribute

Runtime Infrastructure

System.Func'1<+TResult>...System.Func'9<-T1..-T§, +TResult> BCL
System.Collections.Generic.Comparer' 1<T> BCL
System.Collections.Generic.EqualityComparer’ 1 <T> BCL
System.Collections.Generic.ISet" 1<T> BCL
System.Collections.Generic.LinkedList' 1 <T> BCL
System.Collections.Generic.LinkedList" 1 <T>.Enumerator BCL
System.Collections.Generic.LinkedListNode' 1<T> BCL
System.Collections.Generic.Queue’ 1<T> BCL
System.Collections.Generic.Stack 1 <T> BCL
System.Collections.Generic.Stack’ 1 <T>.Enumerator BCL
System.Collections.Stack BCL
System.DBNull BCL

System.Runtime.InteropServices.Marshal

Runtime Infrastructure

System.Runtime.InteropServices.SafeBuffer

Runtime Infrastructure

© ISO/IEC 2012 — All rights reserved.




ISO/IEC 23271:2012(E)

System.Runtime.InteropServices.SafeHandle Runtime Infrastructure
System.Threading. AutoResetEvent BCL
System.Threading. EventWaitHandle BCL
System.Threading.ManualResetEvent BCL
System.WeakReference BCL
System.Runtime.CompilerServices. TypeForwardedToAttribute BCL

System.Runtime.CompilerServices. TypeForwardedFromAttribute BCL

System.Threading. EventResetMode BCL
System.Runtime.InteropServices.DIllAttribute* Runtime Infrastructure
System.Math* BCL

One type, INullableValue, has been removed from the Standard. INullableValue is incompatible
with the semantics of boxing as defined in the previous edition of the Standard. The references to
it were included in error from an earlier draft and no implementations are known to have ever
included it.

Technical Report 89 (TR89), which was submitted during the third edition of this Ecma standard,
will no longer be part of the submission. TR89 specified a collection of generic types, to help
enhance inter-language interoperability, under consideration for inclusion in a future version of
the standard. That consideration has now occurred and TR89 has fulfilled its role. A selection of
the types covered in TR89 has been introduced into this edition of the standard. An

archive version of TR89 will continue to be available from Ecma.

The following companies and organizations have participated in the development of this
standard, and their contributions are gratefully acknowledged: Eiffel Software, Kahu Research,
Microsoft Corporation, Novell Corporation, Twin Roots. For previous editions, the following
companies and organizations are also acknowledged: Borland, Fujitsu Software Corporation,
Hewlett-Packard, Intel Corporation, IBM Corporation, IT University of Copenhagen, Jagger
Software Ltd., Monash University, Netscape, Phone.Com, Plum Hall, and Sun Microsystems.
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1.1 Scope

This International Standard defines the Common Language Infrastructure (CLI) in which
applications written in multiple high-level languages can be executed in different system
environments without the need to rewrite those applications to take into consideration the unique
characteristics of those environments. This International Standard consists of the following parts:

Partition I: Concepts and Architecture — Describes the overall architecture of the CLI, and
provides the normative description of the Common Type System (CTS), the Virtual
Execution System (VES), and the Common Language Specification (CLS). It also
provides an informative description of the metadata.

Partition II: Metadata Definition and Semantics — Provides the normative description of
the metadata: its physical layout (as a file format), its logical contents (as a set of tables
and their relationships), and its semantics (as seen from a hypothetical assembler, ilasm).

Partition III: CIL Instruction Set — Describes the Common Intermediate Language (CIL)
instruction set.

Partition IV: Profiles and Libraries — Provides an overview of the CLI Libraries, and a
specification of their factoring into Profiles and Libraries. A companion file,
CLILibrary.xml, considered to be part of this Partition, but distributed in XML format,
provides details of each class, value type, and interface in the CLI Libraries.

Partition V: Debug Interchange Format — Describes a standard way to interchange
debugging information between CLI producers and consumers.

Partition VI: Annexes — Contains some sample programs written in CIL Assembly
Language (ILAsm), information about a particular implementation of an assembler, a
machine-readable description of the CIL instruction set which can be used to derive parts
of the grammar used by this assembler as well as other tools that manipulate CIL, a set of
guidelines used in the design of the libraries of Partition [V, and portability
considerations.

© ISO/IEC 2012 — All rights reserved. 1



ISO/IEC 23271:2012(E)

1.2 Conformance

A system claiming conformance to this International Standard shall implement all the normative
requirements of this standard, and shall specify the profile (see Partition IV Library — Profiles)
that it implements. The minimal implementation is the Kernel Profile. A conforming
implementation can also include additional functionality provided that functionality does not
prevent running code written to rely solely on the profile as specified in this standard. For
example, a conforming implementation can provide additional classes, new methods on existing
classes, or a new interface on a standardized class, but it shall not add methods or properties to
interfaces specified in this standard.

A compiler that generates Common Intermediate Language (CIL, see Partition IIT) and claims
conformance to this International Standard shall produce output files in the format specified in
this standard, and the CIL it generates shall be correct CIL as specified in this standard. Such a
compiler can also claim that it generates verifiable code, in which case, the CIL it generates shall
be verifiable as specified in this standard.

2 © ISO/IEC 2012 — All rights reserved.
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1.3 Normative references

[Note that many of these references are cited in the XML description of the class libraries. ]

Extensible Markup Language (XML) 1.0 (Third Edition), 2004 February 4,
http://www.w3.0org/TR/2004/REC-xml-20040204/

Federal Information Processing Standard (FIPS 180-1), Secure Hash Standard (SHA-1), 1995,
April.

IEC 60559:1989, Binary Floating-point Arithmetic for Microprocessor Systems (previously
designated IEC 559:1989).

ISO 639, Codes for the representation of names of languages.

ISO 3166-1:2006, Codes for the representation of names of countries and their subdivisions —
Part 1: Country codes.

ISO/IEC 646:1991, Information technology — 1SO 7-bit coded character set for information
interchange

ISO/IEC 9899:1999, Programming languages — C.
ISO/IEC 10646, Information technology — Universal Coded Character Set (UCS).

ISO/IEC 11578:1996, Information technology — Open Systems Interconnection - Remote
Procedure Call (RPC).

ISO/IEC 14882:2011, Information technology — Programming languages — C++.
ISO/IEC 23270:2006, Information technology & Programming languages — C#.
RFC-768, User Datagram Protocol. J. Postel. 1980, August.

RFC-791, Darpa Internet Program Protocol Specification. 1981, September.

RFC-792, Internet Control Message Protocol. Network Working Group. J. Postel. 1981,
September.

RFC-793, Transmission Control Protocol. J. Postel. 1981, September.
RFC-919, Broadcasting Internet Datagrams. Network Working Group. J. Mogul. 1984, October.

RFC-922, Broadcasting Internet Datagrams in the presence of Subnets. Network Working
Group. J. Mogul. 1984, October.

RFC-1035, Domain Names - Implementation and Specification. Network Working Group. P.
Mockapetris. 1987, November.

RFC-1036, Standard for Interchange of USENET Messages, Network Working Group. M.
Horton and R. Adams. 1987, December.

RFC-1112. Host Extensions for IP Multicasting. Network Working Group. S. Deering 1989,
August.

RFC-1222. Advancing the NSFNET Routing Architecture. Network Working Group. H-W
Braun, Y. Rekhter. 1991 May. http://tools.ietf.org/html/rfc1222

RFC-1510, The Kerberos Network Authentication Service (V5). Network Working Group. J.
Kohl and C. Neuman. 1993, September.

RFC-1741, MIME Content Type for BinHex Encoded Files: Format. Network Working Group.
P. Faltstrom, D. Crocker, and E. Fair. 1994, December.

RFC-1764. The PPP XNS IDP Control Protocol (XNSCP). Network Working Group. S. Senum.
1995, March.

RFC-1766, Tags for the Identification of Languages. Network Working Group. H. Alvestrand.
1995, March.

RFC-1792. TCP/IPX Connection Mib Specification. Network Working Group. T. Sung. 1995,
April.
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RFC-2236. Internet Group Management Protocol, Version 2. Network Working Group. W.
Fenner. 1997, November.

RFC-2045, Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet
Message Bodies. Network Working Group. N. Freed. 1996, November.

RFC-2616, Hypertext Transfer Protocol -- HTTP/1.1. Network Working Group. R. Fielding, J.
Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee. 1999 June.
http://www.ietf.org/rfc/rfc2616.txt

RFC-2617, HTTP Authentication: Basic and Digest Access Authentication. Network Working
Group. J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence, P. Leach, A. Luotonen, and L.
Stewart. 1999 June, http://www.ictf.org/rfc/rfc2617.txt

The Unicode Consortium. The Unicode Standard, Version 4.0, defined by: The Unicode
Standard, Version 4.0 (Boston, MA, Addison-Wesley, 2003. ISBN 0-321-18578-1).
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