

IEC 60758

Edition 5.0 2016-05

INTERNATIONAL STANDARD

Synthetic quartz crystal – Specifications and guidelines for use

INTERNATIONAL
ELECTROTECHNICAL
COMMISSION

ICS 31.140

ISBN 978-2-8322-3395-5

Warning! Make sure that you obtained this publication from an authorized distributor.

CONTENTS

FOREWORD.....	6
INTRODUCTION.....	8
1 Scope.....	9
2 Normative references.....	9
3 Terms and definitions	9
4 Specification for synthetic quartz crystal.....	13
4.1 Standard values	13
4.1.1 Shape of synthetic quartz for optical applications.....	13
4.1.2 Orientation of the seed.....	13
4.1.3 Inclusion density	13
4.1.4 Striae in synthetic quartz for optical applications.....	14
4.1.5 Infrared quality indications of α_3 500 and α_3 585 for piezoelectric applications	14
4.1.6 Grade classification by α value and Schlieren method for optical applications	15
4.1.7 Frequency-temperature characteristics of synthetic quartz for piezoelectric applications	15
4.1.8 Etch channel density ρ	15
4.1.9 Internal transmittance for optical applications	16
4.2 Requirements and measuring methods	17
4.2.1 Orientation.....	17
4.2.2 Handedness.....	18
4.2.3 Synthetic quartz crystal dimensions	18
4.2.4 Seed dimensions	19
4.2.5 Imperfections	19
4.2.6 Evaluation of infrared quality by α measurement.....	22
4.2.7 Frequency versus temperature characteristics for piezoelectric applications	24
4.2.8 Striae in synthetic quartz for optical applications	25
4.2.9 Growth band in synthetic quartz for optical applications	25
4.2.10 Etch channel density	26
4.2.11 Internal transmittance for optical applications	27
4.3 Marking.....	27
4.3.1 General	27
4.3.2 Shipping requirements	28
5 Specification for lumbered synthetic quartz crystal	28
5.1 Standard values	28
5.1.1 Tolerance of dimensions	28
5.1.2 Reference surface flatness	29
5.1.3 Angular tolerance of reference surface	29
5.1.4 Centrality of the seed	30
5.2 Requirements and measuring methods	31
5.2.1 As-grown quartz bars used for lumbered quartz bars	31
5.2.2 Dimensions of lumbered synthetic quartz crystal.....	31
5.2.3 Identification on reference surface.....	31
5.2.4 Measurement of reference surface.....	31

5.2.5	Measurement of reference surface angle tolerance	31
5.2.6	Centrality of the seed	31
5.3	Delivery conditions	32
5.3.1	General	32
5.3.2	Marking	32
5.3.3	Packing	32
5.3.4	Making batch	32
6	Inspection rule for synthetic quartz crystal and lumbered synthetic quartz crystal	32
6.1	Inspection rule for as-grown synthetic quartz crystal	32
6.1.1	Inspection	32
6.1.2	Lot-by-lot test	32
6.2	Inspection rule for lumbered synthetic quartz crystal	33
6.2.1	General	33
6.2.2	Lot-by-lot test	34
7	Guidelines for the use of synthetic quartz crystal for piezoelectric applications	34
7.1	General	34
7.1.1	Overview	34
7.1.2	Synthetic quartz crystal	34
7.2	Shape and size of synthetic quartz crystal	35
7.2.1	Crystal axis and face designation	35
7.2.2	Seed	36
7.2.3	Shapes and dimensions	36
7.2.4	Growth zones	37
7.3	Standard method for evaluating the quality of synthetic quartz crystal	37
7.4	Other methods for checking the quality of synthetic quartz crystal	38
7.4.1	General	38
7.4.2	Visual inspection	38
7.4.3	Infrared radiation absorption method	38
7.4.4	Miscellaneous	39
7.5	α grade for piezoelectric quartz	40
7.6	Optional grading (only as ordered), in inclusions, etch channels, Al content	40
7.6.1	Inclusions	40
7.6.2	Etch channels	40
7.6.3	Al content	40
7.6.4	Swept quartz	41
7.7	Ordering	42
Annex A (informative)	Frequently used sampling procedures	43
A.1	Complete volume counting	43
A.2	Commodity Y-bar sampling – Method 1	43
A.3	Commodity Y-bar sampling – Method 2	43
A.4	Use of comparative standards for 100 % crystal inspection	44
Annex B (informative)	Numerical example	45
Annex C (informative)	Example of reference sample selection	46
Annex D (informative)	Explanations of point callipers	47
Annex E (informative)	Infrared absorbance α value compensation	48
E.1	General	48
E.2	Sample preparation, equipment set-up and measuring procedure	48
E.2.1	General	48

E.2.2	Sample preparation	48
E.2.3	Equipment set-up	48
E.2.4	Measurement procedure	49
E.3	Procedure to establish correction terms	49
E.4	Calculation of compensated (corrected) absorbance values	51
Annex F (informative)	Differences of the orthogonal axial system for quartz between IEC standard and IEEE standard	52
Annex G (informative)	α value measurement consistency between dispersive infrared spectrometer and fourier transform infrared spectrometer	54
G.1	General	54
G.2	Experiment	54
G.3	Experimental result	55
Bibliography	58	
Figure 1 – Quartz crystal axis and cut direction	17	
Figure 2 – Idealized sections of a synthetic quartz crystal grown on a Z-cut seed	19	
Figure 3 – Typical example of cutting wafers of AT-cut plate, minor rhombohedral-cut plate, X-cut plate, Y-cut plate and Z-cut plate	21	
Figure 4 – Frequency-temperature characteristics deviation rate of the test specimen	25	
Figure 5 – Typical schlieren system setup	25	
Figure 6 – Lumbered synthetic quartz crystal outline and dimensions along X-, Y- and Z-axes	29	
Figure 7 – Angular deviation for reference surface	30	
Figure 8 – Centrality of the seed with respect to the dimension along the Z- or Z'-axis	31	
Figure 9 – Quartz crystal axis and face designation	36	
Figure 10 – Synthetic quartz crystal grown on a Z-cut seed of small X-dimensions	37	
Figure 11 – Example of a relation between the α value and the Q value at wave number $3\ 500\ \text{cm}^{-1}$	39	
Figure D.1 – Point callipers	47	
Figure D.2 – Digital point callipers	47	
Figure E.1 – Schematic of measurement set-up	49	
Figure E.2 – Graph relationship between averaged α and measured α at two wave numbers of $\alpha_3\ 500$ and $\alpha_3\ 585$	50	
Figure F.1 – Left- and right-handed quartz crystals	53	
Figure G.1 – Relationship of α between measuring value and reference value	57	
Table 1 – Inclusion density grades for piezoelectric applications	14	
Table 2 – Inclusion density grades for optical applications	14	
Table 3 – Infrared absorbance coefficient grades for piezoelectric applications	14	
Table 4 – Infrared absorbance coefficient grades and Schlieren method for optical applications	15	
Table 5 – Etch channel density grades for piezoelectric applications	16	
Table 6 – Test conditions and requirements for the lot-by-lot test for group A	33	
Table 7 – Test conditions and requirements for the lot-by-lot test for group B	33	
Table 8 – Test conditions and requirements for the lot-by-lot test	34	
Table B.1 – Commodity bar sampling, method 1	45	

Table B.2 – Commodity bar sampling	45
Table E.1 – Example of calibration data at α_3 585	50
Table E.2 – Example of calibration data at α_3 500	50

INTERNATIONAL ELECTROTECHNICAL COMMISSION

**SYNTHETIC QUARTZ CRYSTAL –
SPECIFICATIONS AND GUIDELINES FOR USE****FOREWORD**

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 60758 has been prepared by IEC technical committee 49: Piezoelectric, dielectric and electrostatic devices and associated materials for frequency control, selection and detection.

This fifth edition cancels and replaces the fourth edition, published in 2008. This edition constitutes a technical revision.

This edition includes the following significant technical changes with respect to the previous edition:

- order rearrangement and review of terms and definitions;
- abolition as a standard of the infrared absorbance coefficient $\alpha_{3\ 410}$;
- addition of the α value measurement explanation by FT-IR equipment in annex;
- addition of the synthetic quartz crystal standards for optical applications.

The text of this standard is based on the following documents:

FDIS	Report on voting
49/1185/FDIS	49/1190/RVD

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

The committee has decided that the contents of this publication will remain unchanged until the stability date indicated on the IEC website under "<http://webstore.iec.ch>" in the data related to the specific publication. At this date, the publication will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

A bilingual version of this publication may be issued at a later date.

INTRODUCTION

The reason for adding synthetic quartz crystal for optical application to this International Standard is as follows.

Quartz crystal produced for optical applications is produced by many of the same suppliers manufacturing quartz for electronic applications. The equipment and methods to produce optical quartz are similar to those used in the production of electronic quartz. Also, with a few exceptions the characterization methods of electronic and optical material are similar. Therefore, IEC 60758 serves as the proper basis for including addenda related to quartz crystal for optical applications.

SYNTHETIC QUARTZ CRYSTAL – SPECIFICATIONS AND GUIDELINES FOR USE

1 Scope

This International Standard applies to synthetic quartz single crystals intended for manufacturing piezoelectric elements for frequency control, selection and optical applications.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60068-1:2013, *Environmental testing – Part 1: General and guidance*

IEC 60122-1:2002, *Quartz crystal units of assessed quality – Part 1: Generic specification*

IEC 60410, *Sampling plans and procedures for inspection by attributes*

IEC 61994 (all parts), *Piezoelectric and dielectric devices for frequency control and selection – Glossary*