

IEC 62979

Edition 1.0 2017-08

INTERNATIONAL STANDARD

Photovoltaic modules – Bypass diode – Thermal runaway test

INTERNATIONAL
ELECTROTECHNICAL
COMMISSION

ICS 27.160

ISBN 978-2-8322-4587-3

Warning! Make sure that you obtained this publication from an authorized distributor.

CONTENTS

FOREWORD	3
INTRODUCTION	5
1 Scope	6
2 Normative references	6
3 Terms and definitions	6
4 Thermal runaway test	7
4.1 Diode thermal runaway	7
4.2 Test conditions	8
4.3 Preparation of test specimen	8
4.4 Test equipment	9
4.5 Test procedure	10
5 Pass or fail criteria	12
6 Test report	12
Figure 1 – Illustration of how thermal runaway occurs	7
Figure 2 – Circuit for measurement of T_{lead} and forward voltage	9
Figure 3 – Circuit for flowing a forward current to the bypass diode	10
Figure 4 – Circuit for applying a reverse bias voltage to the bypass diode	10
Figure 5 – The typical pattern of thermal runaway	11
Figure 6 – The pattern of non-thermal runaway	11

INTERNATIONAL ELECTROTECHNICAL COMMISSION

**PHOTOVOLTAIC MODULES – BYPASS DIODE –
THERMAL RUNAWAY TEST****FOREWORD**

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 62979 has been prepared by IEC technical committee 82: Solar photovoltaic energy systems.

The text of this International Standard is based on the following documents:

FDIS	Report on voting
82/1269/FDIS	82/1311/RVD

Full information on the voting for the approval of this International Standard can be found in the report on voting indicated in the above table.

This document has been drafted in accordance with the ISO/IEC Directives, Part 2.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

A bilingual version of this publication may be issued at a later date.

INTRODUCTION

During the normal operation of PV modules the bypass diodes are reverse biased. When the PV module is partially shaded (for example by utility poles, buildings, or leaves), some of the cells in the PV module may not be able to produce the current being produced by the other cells in the series string. The shaded cells are then driven into reverse bias so the bypass diode of the shaded cell-string becomes forward bias protecting the shaded cells.

Under these circumstances, the temperature of the bypass diode increases due to the forward current flowing through the diode. It is in this condition that the diodes are tested in accordance with IEC 61215-2:2016, 4.18.1: Bypass diode thermal test. When the shade is removed, operating conditions return to normal and the bypass diode is again reversed biased.

Some of the diodes utilized as bypass diodes in PV modules have characteristics where the reverse bias leakage current increases with the diode temperature. So if the diode is already at an elevated temperature when reverse biased, there will be a substantial leakage current and the diode junction temperature can increase considerably. The worst case occurs when this heating exceeds the cooling capability of the junction box in which the diode is installed. As a result of this increasing temperature and leakage current, the diode can break down. These phenomena are called “thermal runaway”. The thermal design of the bypass diode in the junction box shall be verified to ensure that thermal runaway does not occur.

PHOTOVOLTAIC MODULES – BYPASS DIODE – THERMAL RUNAWAY TEST

1 Scope

This document provides a method for evaluating whether a bypass diode as mounted in the module is susceptible to thermal runaway or if there is sufficient cooling for it to survive the transition from forward bias operation to reverse bias operation without overheating.

This test methodology is particularly suited for testing of Schottky barrier diodes, which have the characteristic of increasing leakage current as a function of reverse bias voltage at high temperature, making them more susceptible to thermal runaway.

The test specimens which employ P/N diodes as bypass diodes are exempted from the thermal runaway test required herein, because the capability of P/N diodes to withstand the reverse bias is sufficiently high.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC TS 61836, *Solar photovoltaic energy systems – Terms, definitions and symbols*