

IEC 62680-1-4

Edition 1.0 2018-04

INTERNATIONAL STANDARD

**Universal serial bus interfaces for data and power –
Part 1-4: Common components – USB Type-C™ Authentication Specification**

INTERNATIONAL
ELECTROTECHNICAL
COMMISSION

ICS 35.200

ISBN 978-2-8322-5533-9

Warning! Make sure that you obtained this publication from an authorized distributor.

INTERNATIONAL ELECTROTECHNICAL COMMISSION

UNIVERSAL SERIAL BUS INTERFACES FOR DATA AND POWER –

Part 1-4: Common components – USB Type-C™ Authentication Specification

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 62680-1-4 has been prepared by technical area 14: Interfaces and methods of measurement for personal computing equipment, of IEC technical committee 100: Audio, video and multimedia systems and equipment.

The text of this standard was prepared by the USB Implementers Forum (USB-IF). The structure and editorial rules used in this publication reflect the practice of the organization which submitted it.

This bilingual version (2019-01) corresponds to the English version, published in 2018-04.

The text of this International Standard is based on the following documents:

CDV	Report on voting
100/2981/CDV	100/3046/RVC

Full information on the voting for the approval of this International Standard can be found in the report on voting indicated in the above table.

The French version of this standard has not been voted upon.

A list of all parts in the IEC 62680 series, published under the general title *Universal serial bus interfaces for data and power*, can be found on the IEC website.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under "<http://webstore.iec.ch>" in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

INTRODUCTION

The IEC 62680 series is based on a series of specifications that were originally developed by the USB Implementers Forum (USB-IF). These specifications were submitted to the IEC under the auspices of a special agreement between the IEC and the USB-IF.

This standard is the USB-IF publication USB Type-C™ Authentication Specification Revision 1.0.

The USB Implementers Forum, Inc.(USB-IF) is a non-profit corporation founded by the group of companies that developed the Universal Serial Bus specification. The USB-IF was formed to provide a support organization and forum for the advancement and adoption of Universal Serial Bus technology. The Forum facilitates the development of high-quality compatible USB peripherals (devices), and promotes the benefits of USB and the quality of products that have passed compliance testing.

ANY USB SPECIFICATIONS ARE PROVIDED TO YOU "AS IS, WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE. THE USB IMPLEMENTERS FORUM AND THE AUTHORS OF ANY USB SPECIFICATIONS DISCLAIM ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PROPRIETARY RIGHTS, RELATING TO USE OR IMPLEMENTATION OR INFORMATION IN THIS SPECIFICAITON.

THE PROVISION OF ANY USB SPECIFICATIONS TO YOU DOES NOT PROVIDE YOU WITH ANY LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS.

Entering into USB Adopters Agreements may, however, allow a signing company to participate in a reciprocal, RAND-Z licensing arrangement for compliant products. For more information, please see:

<http://www.usb.org/developers/docs/>

http://www.usb.org/developers/devclass_docs#approved

IEC DOES NOT TAKE ANY POSITION AS TO WHETHER IT IS ADVISABLE FOR YOU TO ENTER INTO ANY USB ADOPTERS AGREEMENTS OR TO PARTICIPATE IN THE USB IMPLEMENTERS FORUM.

Universal Serial Bus Type-C™ Authentication Specification

Revision 1.0 with ECN and Errata through February 2, 2017

**Copyright © 2017, USB 3.0 Promoter Group
All rights reserved.**

INTELLECTUAL PROPERTY DISCLAIMER

THIS SPECIFICATION IS PROVIDED TO YOU “AS IS” WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE. THE AUTHORS OF THIS SPECIFICATION DISCLAIM ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PROPRIETARY RIGHTS, RELATING TO USE OR IMPLEMENTATION OF INFORMATION IN THIS SPECIFICATION. THE PROVISION OF THIS SPECIFICATION TO YOU DOES NOT PROVIDE YOU WITH ANY LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS.

All product names are trademarks, registered trademarks, or service marks of their respective owners.

USB Type-C™ and USB-C™ are trademarks of USB Implementers Forum.

CONTENTS

Specification Work Group Chairs / Specification Editors	12
Specification Work Group Contributors	12
Revision History	14
1 Introduction	15
1.1 Scope	15
1.2 Overview	15
1.3 Related Documents	16
1.4 Terms and Abbreviations	18
1.5 Conventions	19
1.5.1 Precedence	19
1.5.2 Keywords	19
1.5.3 Numbering	20
1.5.4 Byte Ordering	20
2 Overview	20
2.1 Topology	20
2.2 Cryptographic Methods	21
2.2.1 Random Numbers	21
2.3 Security Overview	22
2.3.1 Periodic Re-Authentication	22
2.3.2 Secret Key Storage and Protection	22
2.3.3 Security Evaluation Criteria	22
2.4 Impact to Existing Ecosystem	22
2.4.1 Proxy Capabilities (PD traversing the Hub topology)	23
3 Authentication Architecture	23
3.1 Certificates	23
3.1.1 Format	23
3.1.2 Textual Format	23
3.1.3 Attributes and Extensions	23
3.2 Certificate Chains	25
3.2.1 Provisioning	25
3.3 Private Keys	26
4 Authentication Protocol	26
4.1 Digest Query	26
4.2 Certificate Chain Read	26
4.3 Authentication Challenge	27
4.4 Errors and Alerts	27
4.4.1 Invalid Request	27
4.4.2 Unsupported Protocol Version	27
4.4.3 Busy	27

4.4.4	Unspecified	27
5	Authentication Messages	27
5.1	Header	28
5.1.1	USB Type-C Authentication Protocol Version	28
5.1.2	Message Type	28
5.1.3	Param1	28
5.1.4	Param2	28
5.2	Authentication Requests	28
5.2.1	GET_DIGESTS	29
5.2.2	GET_CERTIFICATE	29
5.2.3	CHALLENGE	30
5.3	Authentication Responses	30
5.3.1	DIGESTS	31
5.3.2	CERTIFICATE	31
5.3.3	CHALLENGE_AUTH	32
5.3.4	ERROR	33
6	Authentication of PD Products	34
6.1	Transfers less than or equal to <i>MaxExtendedMsgLen</i>	34
6.2	Transfers greater than <i>MaxExtendedMsgLen</i>	35
6.3	Timing Requirements for PD Security Extended Messages	38
6.3.1	Authentication Initiator	38
6.3.2	Authentication Responder	39
6.4	Context Hash	40
7	Authentication of USB Products	40
7.1	Descriptors	40
7.1.1	Authentication Capability Descriptor	40
7.2	Mapping Authentication Messages to USB	41
7.2.1	Authentication IN	41
7.2.2	Authentication OUT	42
7.3	Authentication Protocol	42
7.3.1	Digest Query	42
7.3.2	Certificate Read	43
7.3.3	Authentication Challenge	43
7.3.4	Errors	44
7.4	Timing Requirements for USB	44
7.4.1	USB Host Timing Requirements	44
7.4.2	USB Device Timing Requirements	45
7.5	Context Hash	46
8	Protocol Constants	46
A	ACD	47
A.1.	ACD Formatting	47

A.1.1.	Version TLV	47
A.1.2.	XID TLV	48
A.1.3.	Power Source Capabilities TLV	48
A.1.4.	Power Source Certifications TLV	49
A.1.5.	Cable Capabilities TLV	50
A.1.6.	Security Description TLV	50
A.1.7.	Playpen TLV	54
A.1.8.	Vendor Extension TLV	55
A.1.9.	Extension TLV	55
A.2.	ACD for a PD Product	55
A.3.	ACD for a USB Product	56
B	Cryptographic Examples	57
B.1.	Example Authentication Sequence	57
B.2.	Example Certificate Chain Topology	57
B.2.1.	Certificate Chain	57
B.2.2.	Root Certificate	62
B.2.3.	Key Pairs	63
B.3.	Example Authentication Signature Verification	64
B.3.1.	CHALLENGE Request	64
B.3.2.	CHALLENGE_AUTH Response	64
C	Potential Attack Vectors	65

TABLES

Table 1-1: Terms and Abbreviations	18
Table 2-1: Summary of Cryptographic Methods	21
Table 3-1: Certificate Chain Format	25
Table 5-1: Authentication Message Header	28
Table 5-2: USB Type-C Authentication Protocol Version	28
Table 5-3: Authentication Request Types	29
Table 5-4: GET_DIGESTS Request Header	29
Table 5-5: GET_CERTIFICATE Request Header	29
Table 5-6: GET_CERTIFICATE Request Payload	30
Table 5-7: CHALLENGE Request Header	30
Table 5-8: CHALLENGE Request Payload	30
Table 5-9: Authentication Response Types	30
Table 5-10: DIGESTS Response Header	31
Table 5-11: DIGESTS Response Payload	31
Table 5-12: CERTIFICATE Response Header	31
Table 5-13: CERTIFICATE Response Payload	32

Table 5-14: CHALLENGE_AUTH Response Header	32
Table 5-15: CHALLENGE_AUTH Response Payload	33
Table 5-16: Message Contents for ECDSA Digital Signature	33
Table 5-17: ERROR Response Header	34
Table 5-18: ERROR Codes	34
Table 6-1: Timeout Values for a PD Authentication Initiator	38
Table 6-2: Timing Requirements for PD Authentication Responder	39
Table 7-1: Authentication Capability Descriptor	40
Table 7-2: Authentication Capability Descriptor Types	41
Table 7-3: Authentication Message <i>bRequest</i> Values	41
Table 7-4: Authentication IN Control Request Fields	41
Table 7-5: Authentication Message Header Mapping	41
Table 7-6: Authentication OUT Control Request Fields	42
Table 7-7: GET_DIGESTS Authentication IN Control Request Fields	42
Table 7-8: GET_CERTIFICATE Authentication OUT Control Request Fields	43
Table 7-9: CERTIFICATE Authentication IN Control Request Fields	43
Table 7-10: CHALLENGE Authentication OUT Control Request Fields	43
Table 7-11: CHALLENGE_AUTH Authentication IN Control Request Fields	44
Table 7-12: Authentication Initiator Timeout Values	44
Table 7-13: Authentication Responder Response Times	45
Table 8-1: Protocol Constants	46
Table A-1: TLV General Format	47
Table A-2: TLV Types	47
Table A-3: Version TLV Fields	47
Table A-4: ACD Version Encoding	48
Table A-5: XID TLV Fields	48
Table A-6: Power Source Capabilities TLV Fields	48
Table A-7: Power Source Capabilities TLV Data	49
Table A-8: Power Source Certifications TLV Fields	49
Table A-9: Cable Capabilities TLV Fields	50
Table A-10: Cable Capabilities TLV Data	50
Table A-11: Security Description TLV Fields	50
Table A-12: Security Data	50
Table A-13: FIPS/ISO Level Identifiers	51
Table A-14: Vulnerability Assessment	51
Table A-15: EAL Encodings	52
Table A-16: Protection Profile Encoding	52

Table A-17: Development Security	53
Table A-18: Certification Maintenance	53
Table A-19: Testing Method Encoding	54
Table A-20: Vulnerability Assessment	54
Table A-21: Playpen TLV Fields	55
Table A-22: Vendor Extension TLV Fields	55
Table A-23: Vendor Extension TLV Data	55
Table A-24: Extension TLV Fields	55
Table A-25: PD Product ACD TLVs	56
Table A-26: USB Product ACD TLVs	56
Table B-1: Version TLV Fields	61
Table B-2: XID TLV Fields	61
Table B-3: Power Source Capabilities TLV Fields	61
Table B-4: Security Description TLV Fields	61
Table B-5: Playpen TLV Fields	62
Table B-6: Vendor Extension TLV Fields	62

FIGURES

Figure 2-1 Sample Topology	21
Figure 6-1 Example Security Transfer Process for an Authentication Initiator	36
Figure 6-2 Example Security Transfer Process for an Authentication Responder	37
Figure 6-3 Example 612-Byte Certificate Chain Read	38
Figure A-1: Bitmap of Version TLV Data	48
Figure A-2: Bitmap of the Common Criteria Identifier	51
Figure A-3: Bitmap of the Security Analysis Identifier	53

Specification Work Group Chairs / Specification Editors

Renesas Electronics Corp.	Co-Chair	Bob Dunstan
Intel Corporation	Co-Chair	Abdul Ismail
	Editor	Stephanie Wallick

Specification Work Group Contributors

Advanced Micro Devices	Jason Hawken	Joseph Scanlon	
Apple	Colin Whitby-Strevens	Robert Walsh	Reese Schreiber
	David Conroy	David Sekowski	
Atmel Corporation	Kerry Maletsky	Stephen Clark	Michel Guellec
	Ronald Ih		
Cypress Semiconductor	Subu Sankaran	Jagadeesan Raj	Anup Nayak
	Jan-Willem van der Waert		
Dell Inc.	Sean O'Neal	Mohammed Hijazi	Frank Molsberry
	Dan Hamlin	Rick Martinez	
DisplayLink (UK) Ltd.	Richard Petrie	Pete Burgers	Dan Ellis
Fresco Logic Inc.	Bob McVay	Tom Burton	Christopher Meyers
	Thomas Huang		
Google Inc.	Adam Langley	William Richardson	Adam Rodriguez
	David Schneider	Mark Hayter	Ken Wu
	Will Drewry	Jerry Parson	Sanjay Krishnan
HP Inc.	Alan Berkema	Jim Waldron	Daniel Hong
Infineon Technologies	Thomas Poeppelmann	Wolfgang Furtner	Harald Hewel
	Wieland Fischer	Sie Boo Chiang	
Intel Corporation	Brad Saunders	David Johnston	Chia-Hung Kuo
	Christine Krause	Rolf Kuhnus	Steve McGowan
	Andrew Reinders	Purushottam Goel	Karthi Vadivelu
Lattice Semiconductor	Hoon Choi	Thomas Watzka	
MCCI Corporation	Terry Moore		
Microchip Technology Inc.	Richard Wahler	Mark Bohm	Atish Ghosh
	Robert Schoepflin		
Microsoft Corporation	Niels Ferguson	Nathan Sherman	Martin Borve
	Kinshumann Kinshumann	Vivek Gupta	Toby Nixon
	Kai Inha	Robbie Harris	Andrea Keating
	Fred Bhesania	Jayson Kastens	Rahul Ramadas
NXP Semiconductors	Vijendra Kuroodi	Joe Salvador	Alicia da Conceição
	Krishnan TN		
Renesas Electronics Corp.	Philip Leung	Hideyuki Tanaka	Yuji Asano
	Kentaro Omata	Yoshiyuki Tomoda	Kiichi Muto

ROHM Co., Ltd.	Masahiko Nagata Ruben Balbuena Takashi Sato	Chizuru Matsunaga Kris Bahar	Toshifumi Yamaoka Nobutaka Itakura
Samsung Electronics Co., Ltd.	Tong Kim	Jagoun Koo	Soondo Kim
STMicroelectronics	Enrico Gregoratto Yannick Teglia Andrew Marsh Joel Huloux Christophe Lorin	Guido Bertoni Anis Ben-Abdallah Joris Delclef Bernard Kasser	Sylvie Wuidart Massimo Panzica Nathalie Ballot Dragos Davidescu
Synopsys, Inc.	Eric Huang Venkataraghavan Krishnan Subramaniam Aravindhan Kevin Heilman	Morten Christiansen Nivin George Bala Babu John Youn	Gervais Fong Aaron Yang Satya Patnala Zongyao Wen
Texas Instruments	Charles Campbell	Deric Waters	Scott Jackson
Total Phase	Chris Yokum		
VIA Technologies	Terrance Shih Benjamin Pan	Jay Tseng	Fong-Jim Wang

Revision History

Revision	Date	Description
1.0	March 25, 2016	Initial Release
1.0 + ECN and Errata	February 2, 2017	Includes ECN and errata through February 2, 2017

1 Introduction

This specification provides a means for authenticating Products with regard to identification and configuration. Authentication is performed via USB Power Delivery message communications and/or via USB data bus control transactions.

USB Type-C™ Authentication allows an organization to set and enforce a Policy with regard to acceptable Products. This will permit useful security assurances in real world situations. For example:

- A vendor, concerned about product damage resulting from substandard charging devices, can set a Policy requiring that only certified PD Products be used for charging.
- A user, concerned about charging his phone at a public terminal, can set a Policy in his phone requiring that the phone only charge from certified PD Products.
- An organization, concerned about unidentifiable storage devices gaining access to corporate PC assets, can set a Policy in its PCs requiring that only USB storage devices that have been verified and signed by corporate IT are used.

1.1 Scope

This specification defines the architecture and methodology for unilateral Product Authentication. It is intended to be fully compatible with and extend existing PD and USB infrastructure. Information is provided to allow for Policy enforcement, but individual Policy decisions are not specified.

The Authentication of USB Type-C products that support Alternate Modes is allowed. However, the methods to do so are outside the scope of this specification.

1.2 Overview

This specification provides primitives for unilateral Authentication. The security model defined by this specification permits assurances that a Product is:

- Of a particular type from a particular manufacturer with particular characteristics
- Owned and controlled by a particular organization

Local Policy will determine which features need to be present in an attached Product before accessing or providing a resource (e.g. power, storage, etc.).

Product vendors can add security features beyond those listed in this specification, but the definition and implementation of those features is up to the vendor. Added features cannot alter the base specifications defined herein.

1.3 Related Documents

- **USB2.0** – Universal Serial Bus Specification, Revision 2.0, (including errata and ECNs through August 11, 2014) (referred to in this document as the USB 2.0 Specification) (available at: <http://www.usb.org/developers/docs>.)
- **USB3.1** – Universal Serial Bus 3.1 Specification, Revision 1.0, (including errata and ECNs through August 11, 2014) (referred to in this document as the USB 3.1 Specification) (available at: <http://www.usb.org/developers/docs>.)
- **USBPD** – Universal Serial Bus Power Delivery Specification, Revision 3, Version 1.0a, March 25, 2016 (referred to in this document as the USB PD Specification) (available at: <http://www.usb.org/developers/docs>.)
- **USBTYP EC** –Universal Serial Bus Type-C Cable and Connector Specification, Revision 1.2, March 25, 2016 (referred to in this document as the USB Type-C Specification)(available at: <http://www.usb.org/developers/docs>.)
- **USBTYP EC BRIDGE** Universal Serial Bus Type-C Bridge Specification, Revision 1.0, March 25, 2016, (available at <http://www.usb.org/developers/docs>.)
- **ASN.1** - ISO-822-1-4:
 - ITU-T X.680 (available at:
https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.680-201508-111PDF-E&type=items);
 - ITU-T X.681 (available at:
https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.681-201508-111PDF-E&type=items);
 - ITU-T X.682 (Available at:
https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.682-201508-111PDF-E&type=items);
 - ITU-T X.683 (Available at:
https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.683-201508-111PDF-E&type=items.)
- **DER** - ISO-8825-1; ITU-T X.690 (available at:
https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.690-201508-111PDF-E&type=items.)
- **X509v3** - ISO-9594-8; ITU-T X.509 (available at:
https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.509-201210-111PDF-E&type=items.)
- **Common Criteria:**
 - Common Criteria for Information Technology Security Evaluation, Parts 1-3, Version 3.1, Revision 4, September 2010 (available at:
<https://www.commoncriteriaproject.org/cc/#supporting>)
 - ISO/IEC 15408 Evaluation criteria for IT security Parts 1-3
- **ECDSA:**
 - ANSI X9.62; NIST-FIPS-186-4, Section 6 (available at:
<http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf>.)
 - ISO/IEC 14888-3 Digital signatures with appendix – Part 3: Discrete logarithm based mechanisms (Clause 6.6)
- **NIST P256, secp256r1:**
 - Certicom-SEC-2 (available at: <http://www.secg.org/sec2-v2.pdf>); NIST-Recommended-EC (available at:
<http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf>.)

- ISO/IEC 15946 Cryptographic techniques based on elliptic curves (NIST P-256 is included as example)
 - *Notes: ISO/IEC 15946 series treat elliptic curves differently from FIPS 186-4. ISO/IEC 15946-5 is about elliptic curve generation. That is, based on the method in part 5, each application and implementation can generate its own curves to use. In other words, no ISO/IEC recommended curves. P-256 is considered an example in ISO/IEC 15946. Note that Elliptic Curve signatures and key establishment schemes have been moved to ISO/IEC 14888 and ISO/IEC 11770 respectively together with other discrete log based mechanisms. Test vectors (examples) using P-256 are included for each parts for those mechanisms.*
- **SHA256:**
 - NIST-FIPS-180-4 (available at:
<http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf>.)
 - ISO/IEC 10118-3 Hash-functions – Part 3: Dedicated hash-functions (Clause 10)
- **OID** - ITU-T X.402 (available at: <https://www.itu.int/rec/T-REC-X.402-199906-I/en>.)
- **SP800-90A:**
 - NIST-SP-800-90A (available at:
<http://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf>.)
 - *Note: NIST-SP-800-90A was withdrawn June 2015 and replaced by NIST-SP-800-90A Revision 1
<http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf>*
- **SP800-90B** – NIST-SP-800-90B (available at:
http://csrc.nist.gov/publications/drafts/800-90/sp800-90b_second_draft.pdf)¹

¹ Note that this document is still in DRAFT phase.

² Unless specified otherwise, all standards specified, including those from ISO, ITU, and NIST, refer to the version or edition which is more recent, as of 1 January 2016.