

IEC 63372

Edition 1.0 2026-01

INTERNATIONAL STANDARD

Quantification and communication of carbon footprint, GHG emission reductions and avoided emissions from electric and electronic products and systems - Principles, methodologies, requirements and guidance

CONTENTS

FOREWORD	4
INTRODUCTION	6
1 Scope	7
2 Normative references	7
3 Terms, definitions, and abbreviated terms	7
3.1 Terms related to greenhouse gas	7
3.2 Terms relating to quantification of carbon footprint (GHG emissions and GHG removals)	9
3.3 Terms related to quantification of GHG emission reductions and avoided emissions	14
3.4 Terms related to life cycle assessment	17
3.5 Terms related to organizations and interested parties	18
3.6 Terms related to verification and validation	18
3.7 Abbreviated terms	19
4 Principles	19
4.1 General	19
4.2 Life cycle thinking (LCT)	19
4.3 Relevance	19
4.4 Completeness	19
4.5 Consistency	19
4.6 Accuracy	19
4.7 Transparency	20
4.8 Conservativeness	20
4.9 Priority of scientific approach	20
4.10 Avoidance of double counting	20
4.11 Separate reporting	20
5 Strategy to achieving a low-carbon society	20
5.1 General	20
5.2 Systematic approach to low carbon society	21
6 Quantification	22
6.1 Carbon footprint of a product quantification	22
6.1.1 General	22
6.1.2 Step 1 – Goal and scope of CFP quantification	23
6.1.3 Step 2 – Functional or declared unit	23
6.1.4 Step 3 – System boundary of the product or system	23
6.1.5 Step 4 – Decision on processes to be cut-off	25
6.1.6 Step 5 – Data collection and quality assessment	25
6.1.7 Step 6 – Development of scenarios	27
6.1.8 Allocation	29
6.1.9 Step 7 – Calculating GHG emissions	29
6.1.10 Step 8 – Impact assessment for CFP or partial CFP	32
6.1.11 Step 9 – Interpretation of CFP or partial CFP	32
6.1.12 Extrapolation rules	32
6.2 GHG emission reductions quantification	33
6.2.1 Basic steps of GHG reduction study	33
6.2.2 Step 1 – Defining the goal and scope	33

6.2.3	Step 2 – Identifying the product or system related to GHG emission reductions.....	34
6.2.4	Step 3 – Determining the baseline	35
6.2.5	Step 4 – Selecting relevant GHG sources, sinks and reservoirs (SSRs).....	36
6.2.6	Step 5 – Preliminary estimation and decision on relevant GHG SSRs	38
6.2.7	Step 6 – Estimating baseline emissions	38
6.2.8	Step 7 – Data collection and quality assessment	39
6.2.9	Step 8 – Calculating GHG emission reductions	39
6.3	Avoided emissions quantification	40
6.3.1	General	40
6.3.2	Step 1 – Define the goal and scope	41
6.3.3	Step 2 – Define the product and system selected for the avoided emissions study	41
6.3.4	Step 3 – Determine the functional unit of the assessed product	42
6.3.5	Step 4 – Estimate the baseline scenario	42
6.3.6	Step 5 – Determine the system boundaries	43
6.3.7	Step 6 – Data collection and quality assessment	43
6.3.8	Step 7 – Calculate avoided emissions.....	43
6.3.9	Contribution ratio	44
6.4	GHG emission reductions or avoided emissions for products at organization level.....	46
7	Documentation	48
8	Verification and validation.....	49
8.1	General.....	49
8.2	Guidance on GHG emission reductions or avoided emissions monitoring	49
9	Communication and disclosure	51
9.1	General.....	51
9.2	Specific guidance for avoided emissions	51
9.3	Specific guidance for communication of CFP	51
Annex A (informative)	Strategy for application regarding life cycle model.....	52
Annex B (informative)	Examples of function and functional unit(s) for products and systems	53
B.1	Examples of function and performance related to function	53
B.2	Examples of functional requirements defining functional unit(s)	53
Annex C (informative)	Examples of calculation of GHG emissions	56
C.1	Example of emission factor	56
C.2	Examples of CFP calculation	57
C.3	Example of equivalent energy mix for the manufacturing phase	57
C.4	Example of equivalent energy mix for the use phase	58
C.5	Example of total GHG leakage from a product.....	59
Annex D (informative)	Examples of avoided emissions	61
D.1	Generic use cases of electrical equipment and system	61
D.2	Final product.....	64
D.3	Intermediate product in a product.....	65
D.4	System	69
D.5	Service	75
Annex E (informative)	Correspondence to GHG protocol's Scope 1, 2 and 3	80
Annex F (informative)	Rebound effect	81
Annex G (informative)	Example of calculation of contribution ratio	82

Bibliography.....	83
Figure 1 – GHG emission reductions and avoided emissions	22
Figure 2 – Illustration of GHG emission reductions relative to the baseline	35
Figure 3 – Example contribution ratio of avoided emissions among different target products within a product portfolio	45
Figure 4 – Example of avoided emission allocation	45
Figure 5 – Two options for accumulation	48
Figure A.1 – Life cycle model with some of the possible progressions.....	52
Figure C.1 – Example of CFP calculation	57
Figure D.1 – Continuous comparison of avoided emissions with lifetime extension	62
Figure D.2 – Avoided emissions of a new product after the replacement.....	63
Table 1 – Example of applicable data types	26
Table 2 – Example of applicable emission factors for activities related to life cycle stages.....	30
Table C.1 – Example of SF ₆ leakage from a switchgear.....	60
Table D.1 – Example of avoided emissions of electrical equipment.....	61
Table D.2 – Example of avoided emissions of electrical equipment in a system	63
Table D.3 – Avoided emissions of heat pump (HP) heaters	65
Table D.4 – Example of avoided emissions of DC-DC converter for an EV	66
Table D.5 – Example of avoided emissions of EV battery	67
Table D.6 – Example of avoided emissions of a power electronic drive system (PDS) using an electric motor driven by a variable speed drive	68
Table D.7 – Example of avoided emissions of insulation products for house	69
Table D.8 – Example of avoided emissions of storage hybrid cloud solutions.....	71
Table D.9 – Example of avoided emissions of renewable energy installation with HVDC system.....	72
Table D.10 – Examples of avoided emissions for cooling technologies for radio base station (RBS)	73
Table D.11 – Examples of avoided emissions from energy management systems (EMS) of buildings with solar energy (PV) and storage of electrical energy	73
Table D.12 – Example of avoided emissions for image-based infrastructure structure inspection services	75
Table D.13 – Example of avoided emissions of virtual desktop services for telework.....	76
Table D.14 – Example of avoided emissions of healthcare consultation	78
Table D.15 – Example of avoided emissions of virtual power purchase agreements (VPPAs).....	79
Table E.1 – GHG emissions corresponding to GHG protocol's Scope 1, 2 and 3	80
Table E.2 – Relationship between CFP and GHG protocol's Scope 1, 2 and 3	80

INTERNATIONAL ELECTROTECHNICAL COMMISSION

Quantification and communication of carbon footprint, GHG emission reductions and avoided emissions from electric and electronic products and systems - Principles, methodologies, requirements and guidance

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) IEC draws attention to the possibility that the implementation of this document may involve the use of (a) patent(s). IEC takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, IEC had not received notice of (a) patent(s), which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at <https://patents.iec.ch>. IEC shall not be held responsible for identifying any or all such patent rights.

IEC 63372 has been prepared by IEC technical committee 111: Environmental standardization for electrical and electronic products and systems. It is an International Standard.

This document has been given the status of a horizontal document in accordance with the ISO/IEC Directives, Part 1.

This first edition of IEC 63372 cancels and replaces IEC TR 62725:2013 and IEC TR 62726:2014, which have been technically revised.

This edition includes the following significant technical changes with respect to the previous edition:

- a) updating and enhancing content related to carbon footprint of a product to align with new or updated reference standards;

- b) including product and system in quantification of GHG emission reductions;
- c) adding the content related to avoided emissions including use cases in Annex D.

The text of this International Standard is based on the following documents:

Draft	Report on voting
111/857/FDIS	111/865/RVD

Full information on the voting for its approval can be found in the report on voting indicated in the above table.

The language used for the development of this International Standard is English.

This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are described in greater detail at www.iec.ch/publications.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under webstore.iec.ch in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn, or
- revised.

INTRODUCTION

There is a broad understanding that greenhouse gas (GHG) emissions must be reduced significantly from current levels in order to keep global warming within acceptable levels. Electrical and electronic (EE) products and systems play an important part in this by enabling a transition to more energy-efficient products and systems. However, even though EE products and systems can contribute to reducing GHG emissions, they lead to GHG emissions.

This document describes methods for quantifying and communicating the GHG emissions related to products. It covers three related topics: carbon footprint of a product (CFP), emission reductions, and avoided emissions.

Many governments and intergovernmental organizations are introducing, for example, carbon taxes or similar carbon pricing to incentivize reducing emissions. In this context, it is important that there is a horizontal standard to guide the calculating, in a consistent way, of the CFP of different kinds of products and systems.

Emission reductions is the difference in emissions between a baseline and a target situation, product, system, or product-related GHG project. The baseline can, for example, be a previous version of the product. In that case, the emission reductions allow the organization to quantify how they are contributing to reaching policy goals.

Avoided emissions, finally, are a special case of emission reductions. Frequently, a product or system produced by one organization can enable another to emit less GHG than it would otherwise have done. Additionally, it is possible that many EE businesses will increase their total emissions as a consequence of them expanding to meet future decarbonization needs (in contrast to, for example, a fossil fuel business that is scaling down and showing reduced emissions), and many new products will be manufactured, creating emissions that did not exist before. The concept of avoided emissions provides a way for an EE business to show that it is still contributing to a net improvement of society, even though the emission reductions occur outside of its organization and its own emissions are increasing.

Furthermore, the organization operating an EE business needs robust and reliable calculation methods to establish the amount of avoided emissions achieved by its products and systems. An important purpose of this document is to define methodologies to assess avoided emissions from the use of new technologies in a reproducible, repeatable, unambiguous, and transparent manner.

Nevertheless, avoided emissions are reported separately from GHG emissions and are not subtracted from the total GHG emissions. Moreover, avoided emissions do not offset the direct and indirect GHG emissions of an organization.

Through the information disclosure based on this document, an EE business can claim that its products and systems can reduce or avoid emissions and contribute to solving climate issues directly or indirectly linked with United Nations Sustainable Development Goal 13 (UN SDG 13): Climate Action.

1 Scope

This document describes principles and methodologies, specifies requirements and provides guidance for quantification and communication of carbon footprint a product (CFP), emission reductions and avoided emissions from electric and electronic (EE) products and systems. This document is also applicable to product-related GHG projects.

The GHG quantification such as CFP is based on life cycle assessment (LCA) methods.

This document is a basic environment horizontal publication focusing on essential requirements and is primarily intended for use by committees in the preparation of publications within the area of environment in accordance with the principles laid down in IEC Guide 123. Wherever applicable, it is the responsibility of committees to make use of environment basic publications in the preparation of their environment group and product publications. Committees can apply this document directly to products when they do not develop a product publication in the area of environment.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 63366:2025, *Product category rules for life cycle assessment of electrical and electronic products and systems*

ISO 14067:2018, *Greenhouse gases - Carbon footprint of products - Requirements and guidelines for quantification*

Bibliography

IEC 60076-7:2018, *Power transformers - Part 7: Loading guide for mineral-oil-immersed power transformers*

IEC 60076-12:2008, *Power transformers - Part 12: Loading guide for dry-type power transformers*

IEC TR 62725:2013, *Analysis of quantification methodologies for greenhouse gas emissions for electrical and electronic products and systems*

IEC TR 62726:2014, *Guidance on quantifying greenhouse gas emission reductions from the baseline for electrical and electronic products and systems*

ISO/IEC/IEEE 24748-1:2024, *Systems and software engineering - Life cycle management - Part 1: Guidelines for life cycle management*

ISO 14040:2006, *Environmental management - Life cycle assessment - Principles and framework*

ISO 14044:2006, *Environmental management - Life cycle assessment - Requirements and guidelines*

ISO 14025:2006, *Environmental labels and declarations - Type III environmental declarations - Principles and procedures*

ISO 14026:2017, *Environmental labels and declarations - Principles, requirements and guidelines for communication of footprint information*

ISO/TS 14027:2017, *Environmental labels and declarations - Development of product category rules*

ISO 14064-1:2018, *Greenhouse gases - Part 1: Specification with guidance at the organization level for quantification and reporting of greenhouse gas emissions and removals*

ISO 14064-2:2019, *Greenhouse gases - Part 2: Specification with guidance at the project level for quantification, monitoring and reporting of greenhouse gas emission reductions or removal enhancements*

ISO 14064-3:2019, *Greenhouse gases - Part 3: Specification with guidance for the verification and validation of greenhouse gas statements*

ISO/TS 14071:2024, *Environmental management - Life cycle assessment - Critical review processes and reviewer competencies*

Rec. ITU-T L.1410 (12/2014), *Methodology for environmental life cycle assessments of information and communication technology goods, networks and services*

Rec. ITU-T L.1410 (11/2024), *Methodology for environmental life cycle assessments of information and communication technology goods, networks and services*

Rec. ITU-T L.1480 (12/2022), *Enabling the Net Zero transition: Assessing how the use of information and communication technology solutions impact greenhouse gas emissions of other sectors*

ETSI TS 104 134 V1.1.1 (2025-09), Environmental Engineering (EE); Simplified Method for including Uncertainty and Sensitivity Aspects in Calculations of the Avoided Environmental Impact of Information and Communication Technology Solutions

EFDB emission factor database, IPCC

Estimating and Reporting the Comparative Emissions Impacts of Products, March 2019, World Research Institute

GHG Protocol Corporate Accounting and Reporting standards: 2004, The Greenhouse Gas Protocol

GHG Protocol Corporate Value Chain (Scope 3) Accounting and Reporting Standard: 2011, The Green Gas Protocol

GHG Protocol Product Life Cycle Accounting and Reporting Standard:2011, The Greenhouse Gas Protocol

GHG Protocol for Project Accounting:2005, The Greenhouse Gas Protocol

Guidance on Avoided Emissions:2023, WBCSD

Guidance on Calculating GHG Emission Reduction Contributions of Electronic Components ver2: 2022, JEITA

IEA emission factors database (<https://www.iea.org/data-and-statistics/data-product/emissions-factors-subscription>), IEA

IEA World Energy Outlook - e.g 2024 Report (<https://www.iea.org/reports/world-energy-outlook-2024>), IEA

IPCC Assessment Report (<https://www.ipcc.ch/assessment-report/>), IPCC

Report on the Framework for Quantifying IT Solutions' Contributions to CO₂ Emissions Suppression - Umbrella Method for Calculation and Aggregation:2017, JEITA

The Avoided Emissions Framework (AEF): 2020, Mission Innovation
