

IEC 62878-2-5

Edition 1.0 2019-09

INTERNATIONAL STANDARD

**Device embedding assembly technology –
Part 2-5: Guidelines – Implementation of a 3D data format for device embedded
substrate**

INTERNATIONAL
ELECTROTECHNICAL
COMMISSION

ICS 31.180; 31.190

ISBN 978-2-8322-7399-9

Warning! Make sure that you obtained this publication from an authorized distributor.

CONTENTS

FOREWORD	5
1 Scope	7
2 Normative references	7
3 Terms and definitions	7
4 Data definition	10
4.1 Flow chart design of device embedded substrate	10
4.2 Applicable range	11
4.2.1 Product	11
4.2.2 Process	12
4.3 Features	13
4.3.1 General	13
4.3.2 Device embedded substrate structure	13
4.3.3 SiP interposer structure	14
4.3.4 Virtual layer description	15
4.3.5 Terminal structure and embedded device structure including an SiP	15
4.3.6 Total design data of an SiP and device embedded substrate	15
4.4 Data description summary	16
4.4.1 Type of data and structures	16
4.4.2 File structure	18
4.5 3D expression	19
4.5.1 General	19
4.5.2 Coordinates	19
4.5.3 Position description	20
4.5.4 Relation between coordinate origin and board position	20
4.6 Layer concept	21
4.7 Substrate data	21
4.7.1 General	21
4.7.2 Layer map information	22
4.7.3 Device arrangement information	23
4.7.4 Basic figures	25
4.7.5 Net information	31
4.7.6 Artwork information	32
4.7.7 Package information	32
4.7.8 External port information	33
4.7.9 Internal port information	33
4.7.10 User expansion information	33
4.8 Defined data	33
4.8.1 General	33
4.8.2 Layer definition	33
4.8.3 Land definition	34
4.8.4 Via definition	35
4.8.5 Device definition	36
4.8.6 User expansion definition	37
5 Data organization and data description based on XML schema	38
5.1 General	38
5.2 Data organization of Example 1	38
5.3 Data description of layer stack-up	39

5.4	Data description of device	43
5.5	Data organization of layer	47
5.6	Data description of via	50
5.7	Data description of land	51
	Bibliography	53

Figure 1 – Flow chart of design of device embedded substrate	11
Figure 2 – General structure of device embedded substrate	12
Figure 3 – Example of device embedded substrate structure	14
Figure 4 – Examples of SiPs	14
Figure 5 – Example of virtual layer description	15
Figure 6 – Terminal structure	15
Figure 7 – Structure of SiP on a device embedded substrate	16
Figure 8 – Data structure	18
Figure 9 – One file structure (recommended)	19
Figure 10 – Two file structure	19
Figure 11 – Definition of coordinates	20
Figure 12 – Position definition	20
Figure 13 – Relation between coordinates and board position	21
Figure 14 – Layer concept	21
Figure 15 – Layer construction	22
Figure 16 – Simplified layer construction	23
Figure 17 – Layer definition of pad connection	24
Figure 18 – Layer definition of via connection	24
Figure 19 – Rotation direction on <i>X</i> , <i>Y</i> , and <i>Z</i> axes	25
Figure 20 – Point	26
Figure 21 – Area	27
Figure 22 – Lines	27
Figure 23 – Letters	28
Figure 24 – Letter shape	28
Figure 25 – Bonding wire information	29
Figure 26 – Semi-sphere	29
Figure 27 – Truncated pyramid	30
Figure 28 – Via	30
Figure 29 – Device definition	31
Figure 30 – Group	31
Figure 31 – Data structure of net information	32
Figure 32 – Relation of layer definition data	34
Figure 33 – Land definition	35
Figure 34 – Relation between hole information and land information	36
Figure 35 – Device with internal connection information	37
Figure 36 – Device without internal connection information	37
Figure 37 – Cross sectional view of Example 1	38
Figure 38 – Data organization of Example 1	38

Figure 39 – Data description of Example 1	39
Figure 40 – Layer structure of Example 1.....	40
Figure 41 – Data description of layer stack-up	42
Figure 42 – Configuration of device 1.....	43
Figure 43 – Data description of device 1	44
Figure 44 – Configuration of device 2.....	45
Figure 45 – Data description of device 2	46
Figure 46 – Layer view of Example 1	48
Figure 47 – Data description of layers.....	50
Figure 48 – Type of vias	51
Figure 49 – Data description of vias.....	51
Figure 50 – Type of lands	52
Figure 51 – Data description of lands.....	52
Table 1 – Required information	13
Table 2 – List of data	17

INTERNATIONAL ELECTROTECHNICAL COMMISSION

DEVICE EMBEDDING ASSEMBLY TECHNOLOGY –**Part 2-5: Guidelines – Implementation of a 3D data format
for device embedded substrate****FOREWORD**

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 62878-2-5 has been prepared by IEC technical committee 91: Electronics assembly technology.

This first edition cancels and replaces IEC PAS 62878-2-5 published in 2015. This edition constitutes a technical revision.

This edition includes the following significant technical changes with respect to the previous edition:

- a) the title has been changed to "Implementation of a 3D data format for device embedded substrate" from "Requirements of design date format for device embedded substrate";
- b) the scope of this implementation has changed to not include SiPs.

The text of this International Standard is based on the following documents:

CDV	Report on voting
91/1557/CDV	91/1589/RVC

Full information on the voting for the approval of this International Standard can be found in the report on voting indicated in the above table.

This document has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all parts in the IEC 62878 series, published under the general title *Device embedding assembly technology*, can be found on the IEC website.

Future standards in this series will carry the new general title as cited above. Titles of existing standards in this series will be updated at the time of the next edition.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under "<http://webstore.iec.ch>" in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

A bilingual version of this publication may be issued at a later date.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

DEVICE EMBEDDING ASSEMBLY TECHNOLOGY –**Part 2-5: Guidelines – Implementation of a 3D data format
for device embedded substrate****1 Scope**

This part of IEC 62878 specifies requirements based on XML schema that represents a design data format for device embedded substrate, which is a board comprising embedded active and passive devices whose electrical connections are made by means of a via, electroplating, conductive paste or printing of conductive material.

This data format is to be used for simulation (e.g. stress, thermal, EMC), tooling, manufacturing, assembly, and inspection requirements. Furthermore, the data format is used for transferring information among printed board designers, printed board simulation engineer, manufacturers, and assemblers.

This part of IEC 62878 applies to substrates using organic material. It neither applies to the re-distribution layer (RDL) nor to the electronic modules defined as M-type business model in IEC 62421.

2 Normative references

There are no normative references in this document.