

IEC 61753-056-2

Edition 1.0 2012-12

INTERNATIONAL STANDARD

Fibre optic interconnecting devices and passive components – Performance standard –

Part 056-2: Single mode fibre pigtailed style optical fuse for category C – Controlled environment

INTERNATIONAL
ELECTROTECHNICAL
COMMISSION

PRICE CODE

R

ICS 33.180.20

ISBN 978-2-83220-515-0

Warning! Make sure that you obtained this publication from an authorized distributor.

CONTENTS

FOREWORD	3
INTRODUCTION	5
1 Scope	6
2 Normative references	6
3 Tests	7
4 Test reports	7
5 Performance requirements	7
5.1 Sample size, sequencing and grouping	7
5.2 Dimensions	7
5.3 Test details and requirements	8
Annex A (normative) Sample size and product sourcing requirements	14
Annex B (normative) Power thresholds for optical fuses	15
Annex C (informative) Example of dimensions for optical fuses	16
Annex D (normative) Testing of optical fuses	17
 Figure C.1 – Optical fuse, in-line configuration, regularly without connectors	16
Figure D.1 – Test set-up schematics	17
Figure D.2 – Example of power threshold and blocking attenuation at threshold measurements for sample 1280A of an optical fuse	18
Figure D.3 – Response time curve of an optical fuse	19
Figure D.4 – Response time testing set-up	19
 Table 1 – Performance requirements for optical fuses	8
Table A.1 – Sample size and product sourcing requirements	14
Table B.1 – Powers for optical fuses, single-mode	15

INTERNATIONAL ELECTROTECHNICAL COMMISSION

**FIBRE OPTIC INTERCONNECTING DEVICES
AND PASSIVE COMPONENTS –
PERFORMANCE STANDARD –**

**Part 056-2: Single mode fibre pigtailed
style optical fuse for category C –
Controlled environment**

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.

International Standard IEC 61753-056-2 has been prepared by subcommittee SC86B: Fibre optic interconnecting devices and passive components, of IEC technical committee TC86: Fibre optics.

The text of this standard is based on the following documents:

FDIS	Report on voting
86B/3500/FDIS	86B/3544/RVD

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all parts in the IEC 61753 series, published under the general title *Fibre optic interconnecting devices and passive components – Performance standard*, can be found on the IEC website.

The committee has decided that the contents of this publication will remain unchanged until the stability date indicated on the IEC web site under "<http://webstore.iec.ch>" in the data related to the specific publication. At this date, the publication will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

A bilingual version of this publication may be issued at a later date.

INTRODUCTION

- 1) The International Electrotechnical Commission (IEC) draws attention to the fact that it is claimed that compliance with this document may involve the use of a patent concerning optical fuse.

IEC takes no position concerning the evidence, validity and scope of this patent right.

The holder of this patent right has assured the IEC that he/she is willing to negotiate licences either free of charge or under reasonable and non-discriminatory terms and conditions with applicants throughout the world. In this respect, the statement of the holder of this patent right is registered with IEC. Information may be obtained from:

KiloLambda technologies, Ltd.
22a Wallenberg street,
Tel-Aviv 69719,
Israel

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights other than those identified above. IEC shall not be held responsible for identifying any or all such patent rights.

ISO (www.iso.org/patents) and IEC (<http://patents.iec.ch>) maintain on-line data bases of patents relevant to their standards. Users are encouraged to consult these data bases for the most up-to-date information concerning patents.

US patent US-7162,114 B2, Optical Energy switching device and method", granted January 9, 2007.

Japan patent 4376632, Optical Energy switching device and method", granted September 18, 2009.

- 2) The optical fuse is a passive device, designed to protect equipment and fibre cables from damage due to optical overpower, spikes and surges. The optical fuse produces a controlled, permanent, signal blocking at a predetermined power threshold in an optical fibre transmission line. The optical fuse is wavelength independent over its entire specified spectral range. IEC 60869-1 contains generic information on optical fuses. The optical fuse has a maximum allowed power input $P_{in\ max}$. Beyond this power it is dysfunctional and can let light through. Numerical values for $P_{in\ max}$ are given in Annex B.

FIBRE OPTIC INTERCONNECTING DEVICES AND PASSIVE COMPONENTS – PERFORMANCE STANDARD –

Part 056-2: Single mode fibre pigtailed style optical fuse for category C – Controlled environment

1 Scope

This part of IEC 61753 contains the minimum initial test and measurement requirements and severities which a fibre optical fuse satisfies in order for it to be categorised as meeting the requirements of single mode fibre pigtailed style optical fuse used in controlled environments. Optical performance specified in this document relates to in-line type configurations fuses only.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60793-2-50, *Optical fibres – Part 2-50: Product specifications – Sectional specification for class B single-mode fibres*

IEC 60869-1, *Fibre optic interconnecting devices and passive components – Fibre optic passive power control devices – Part 1: Generic specification*¹

IEC 61300-1, *Fibre optic interconnecting devices and passive components – Basic test and measurement procedures – Part 1: General and guidance*

IEC 61300-2-1, *Fibre optic interconnecting devices and passive components – Basic test and measurement procedures – Part 2-1: Tests – Vibration (sinusoidal)*

IEC 61300-2-4, *Fibre optic interconnecting devices and passive components – Basic test and measurement procedures – Part 2-4: Fibre/cable retention*

IEC 61300-2-9, *Fibre optic interconnecting devices and passive components – Basic test and measurement procedures – Part 2-9: Tests – Shock*

IEC 61300-2-14, *Fibre optic interconnecting devices and passive components – Basic test and measurement procedures – Part 2-14: Tests – High optical power*¹

IEC 61300-2-17, *Fibre optic interconnecting devices and passive components – Basic test and measurement procedures – Part 2-17: Tests – Cold*

IEC 61300-2-18, *Fibre optic interconnecting devices and passive components – Basic test and measurement procedures – Part 2-18: Tests – Dry heat – High temperature endurance*

¹ To be published.

IEC 61300-2-19, *Fibre optic interconnecting devices and passive components – Basic test and measurement procedures – Part 2-19: Tests – Damp heat (steady state)*

IEC 61300-2-22, *Fibre optic interconnecting devices and passive components – Basic test and measurement procedures – Part 2-22: Tests – Change of temperature*

IEC 61300-2-42, *Fibre optic interconnecting devices and passive components – Basic test and measurement procedures – Part 2-42: Tests – Static side load for connectors*

IEC 61300-2-44, *Fibre optic interconnecting devices and passive components – Basic test and measurement procedures – Part 2-44: Tests – Flexing of the strain relief of fibre optic devices*

IEC 61300-3-2, *Fibre optic interconnecting devices and passive components – Basic test and measurement procedures – Part 3-2: Examinations and measurements – Polarization dependent loss in a single-mode fibre optic device*

IEC 61300-3-3, *Fibre optic interconnecting devices and passive components – Basic test and measurement procedures – Part 3-3: Examinations and measurements – Active monitoring of changes in attenuation and return loss*

IEC 61300-3-7, *Fibre optic interconnecting devices and passive components – Basic test and measurement procedures – Part 3-7: Examinations and measurements – Wavelength dependence of attenuation and return loss of single mode components*

IEC 61300-3-32, *Fibre optic interconnecting devices and passive components – Basic test and measurement procedures – Part 3-32: Examinations and measurements – Polarization mode dispersion measurement for passive optical components*