INTERNATIONAL ISO/IEC
STANDARD 15291

First edition
1999-04-15

Information technology — Programming
languages — Ada Semantic Interface
Specification (ASIS)

Technologies de l'information — Langages de programmation, leurs
environnements et interfaces de logiciel de systeme — Spécification
d'interface pour la sémantique Ada

Reference number
) == ISO/IEC 15291:1999(E)

ISO/IEC 15291:1999(E)

Contents

FOREWORD
INTRODUCTION
1 GENERAL

2 ASIS TECHNICAL CONCEPTS

©

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or
utilized in any form or by any means, electronic or mechanical, including photocopying and

1.1

Scope

1.1.1 Extent

1.1.2 Structure

1.1.3 Conformity with this International Standard
1.1.3.1 Implementation conformance requirements
1.1.3.2 Implementation conformance documentation
1.1.3.3 Implementation conformance categories
1.1.3.4 Application conformance categories

1.1.4 Implementation permissions
1.1.4.1 Traditional approach (permission 1)
1.1.4.2 Client/ server approach (permission 2)
1.1.4.3 Distributed traditional approach (permission 3)
1.1.4.4 ASIS dynamic client approach (permission 4)

1.1.5 Classification of errors

1.2
13

21

Normative reference
Terms and definitions

Ada compilation environment

2.1.1 Ada environment
2.1.2 ASIS notion of the Ada compilation environment
2.1.3 lllegal / inconsistent units in the compilation environment

2.2

ASIS queries

2.2.1 Structural queries

2.2.2 Semantic queries

2.2.3 General ASIS query processing
2.2.3.1 Elements and element kinds
2.2.3.2 Processing specific constructs
2.2.3.3 Element list processing
2.2.3.4 Operations that apply to all elements
2.2.3.5 Semantic references

2.3

2.4
24.1
24.2
243

ASIS package architecture
Application use
Establishing ASIS context
Required sequencing of calls
Notional ASIS application

2.4.4 Erroneous applications

2.45

Usage rules

2.45.1 General usage rules
2.4.5.2 Rules for processing queries for illegal/inconsistent context

ISO/IEC 1999

microfilm, without permission in writing from the publisher.
ISO/IEC Copyright Office « Case postale 56 « CH-1211 Genéve 20 * Switzerland
Printed in Switzerland

© ISO/IEC

3 PACKAGEASIScccoiiiii,

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9
3.9.1
3.9.2
3.9.3
3.94
3.95
3.9.6
3.9.7
3.9.8
3.9.9
3.9.10
3.9.11
3.9.12
3.9.13
3.9.14
3.9.15
3.9.16
3.9.17
3.9.18
3.9.19
3.9.20
3.9.21
3.9.22
3.9.23

3.10

3.11

3.12
3.12.1
3.12.2
3.12.3
3.12.4

3.13

3.14

type ASIS_Integer
type ASIS_Natural
type ASIS_Positive
type List_Index
type Context
type Element
type Element_List
subtypes of Element and Element_List
Element Kinds
type Element_Kinds
type Pragma_Kinds
type Defining_Name_Kinds
type Declaration_Kinds
type Trait_Kinds
type Declaration_Origins
type Mode_Kinds
type Subprogram_Default_Kinds
type Definition_Kinds
type Type_Kinds
type Formal_Type_Kinds
type Access_Type_Kinds
type Root_Type_Kinds
type Constraint_Kinds
type Discrete_Range_Kinds
type Association_Kinds
type Expression_Kinds
type Operator_Kinds
type Attribute_Kinds
type Statement_Kinds
type Path_Kinds
type Clause_Kinds
type Representation_Clause_Kinds
type Compilation_Unit
type Compilation_Unit_List
Unit Kinds
type Unit_Kinds
type Unit_Classes
type Unit_Origins
type Relation_Kinds
type Traverse_Control
type Program_Text

4 PACKAGE ASIS.ERRORS

4.1

type Error_Kinds

5 PACKAGE ASIS.EXCEPTIONS
6 PACKAGE ASIS.IMPLEMENTATION

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

function ASIS_Version

function ASIS_Implementor

function ASIS_Implementor_Version
function ASIS_Implementor_Information
function Is_Initialized

procedure Initialize

function Is_Finalized

procedure Finalize

function Status

ISO/IEC 15291:1999(E)

ISO/IEC 15291:1999(E) © ISO/IEC
6.10 function Diagnosis 54
6.11 procedure Set_Status 55

7 PACKAGE ASIS.IMPLEMENTATION.PERMISSIONS.........cccoiiiiiiieieeeeen, 56
7.1 function Is_Formal_Parameter Named_Notation_Supported 56
7.2 function Default_In_Mode_Supported 56
7.3 function Generic_Actual_Part Normalized 56
7.4 function Record_Component_Associations_Normalized 56
7.5 function Is_Prefix_Call_Supported 57
7.6 function Function_Call_Parameters_Normalized 57
7.7 function Call_Statement_Parameters_Normalized 57
7.8 function Discriminant_Associations_Normalized 57
7.9 function Is_Line_Number_Supported 58
7.10 function Is_Span_Column_Position_Supported 58
7.11 function Is_Commentary_Supported 58
7.12 function Attributes_Are_Supported 58
7.13 function Implicit_Components_Supported 58
7.14 function Object_Declarations_Normalized 58
7.15 function Predefined_Operations_Supported 59
7.16 function Inherited_Declarations_Supported 59
7.17 function Inherited_Subprograms_Supported 59
7.18 function Generic_Macro_Expansion_Supported 59

8 PACKAGE ASIS.ADA_ENVIRONMENTS ... 60
8.1 function Default_Name 60
8.2 function Default_Parameters 60
8.3 procedure Associate 60
8.4 procedure Open 61
8.5 procedure Close 61
8.6 procedure Dissociate 61
8.7 function Is_Equal 62
8.8 function Is_Identical 62
8.9 function Exists 63
8.10 function Is_Open 63
8.11 function Has_Associations 63
8.12 function Name 63
8.13 function Parameter 64
8.14 function Debug_Image 64

9 PACKAGE ASIS.ADA_ENVIRONMENTS.CONTAINERS.........cccoovvviiiiinnnnn. 65
9.1 type Container 65
9.2 type Container_List 65
9.3 function Defining_Containers 65
9.4 function Enclosing_Context 66
9.5 function Library_Unit_Declaration 66
9.6 function Compilation_Unit_Bodies 67
9.7 function Compilation_Units 67
9.8 function Is_Equal 67
9.9 function Is_Identical 68
9.10 function Name 68

10 PACKAGE ASIS.COMPILATION_UNITS ..o 69
10.1 function Unit_Kind 69
10.2 function Unit_Class 69
10.3 function Unit_Origin 70
10.4 function Enclosing_Context 70

© ISO/IEC

ISO/IEC 15291:1999(E)

10.5 function Enclosing_Container 70
10.6 function Library_Unit_Declaration 71
10.7 function Compilation_Unit_Body 71
10.8 function Library_Unit_Declarations 71
10.9 function Compilation_Unit_Bodies 72
10.10 function Compilation_Units 72
10.11 function Corresponding_Children 72
10.12 function Corresponding_Parent_Declaration 73
10.13 function Corresponding_Declaration 74
10.14 function Corresponding_Body 76
10.15 function Is_Nil 77
10.16 function Is_Nil 77
10.17 function Is_Equal 77
10.18 function Is_ldentical 78
10.19 function Unit_Full_Name 78
10.20 function Unique_Name 78
10.21 function Exist 79
10.22 function Can_Be_Main_Program 79
10.23 function Is_Body_Required 79
10.24 function Text_Name 79
10.25 function Text_Form 80
10.26 function Object_Name 80
10.27 function Object_Form 80
10.28 function Compilation_Command_Line_Options 81
10.29 function Has_Attribute 81
10.30 function Attribute_Value_Delimiter 81
10.31 function Attribute_Values 81
10.32 function Subunits 82
10.33 function Corresponding_Subunit_Parent_Body 82
10.34 function Debug_Image 83
11 PACKAGE ASIS.COMPILATION_UNITS. TIMES ... 84
11.1 type Time 84
11.2 function Time_Of_Last Update 84
11.3 function Compilation_CPU_Duration 84
11.4 function Attribute_Time 85
12 PACKAGE ASIS.COMPILATION_UNITS.RELATIONS ..., 86
12.1 type Relationship 86
12.2 constant Nil_Relationship 88
12.3 function Semantic_Dependence_Order 88
12.4 function Elaboration_Order 89
13 PACKAGE ASIS.ELEMENTS ... 91
13.1 function Unit_Declaration 91
13.2 function Enclosing_Compilation_Unit 91
13.3 function Context_Clause_Elements 92
13.4 function Configuration_Pragmas 92
13.5 function Compilation_Pragmas 93
13.6 function Element_Kind 94
13.7 function Pragma_Kind 94
13.8 function Defining_Name_Kind 95
13.9 function Declaration_Kind 95
13.10 function Trait_Kind 95
13.11 function Declaration_Origin 96
13.12 function Mode_Kind 96

ISO/IEC 15291:1999(E)

14 PACKAGE ASIS.ITERATOR

15 PACKAGE ASIS.DECLARATIONS

Vi

13.13
13.14
13.15
13.16
13.17
13.18
13.19
13.20
13.21
13.22
13.23
13.24
13.25
13.26
13.27
13.28
13.29
13.30
13.31
13.32
13.33
13.34
13.35
13.36
13.37
13.38
13.39
13.40
13.41
13.42

141

15.1
15.2
15.3
154
155
15.6
15.7
15.8
15.9
15.10
15.11
15.12
15.13
15.14
15.15
15.16
15.17
15.18
15.19
15.20
15.21

function Default_Kind

function Definition_Kind

function Type_Kind

function Formal_Type_Kind
function Access_Type Kind
function Root_Type_Kind
function Constraint_Kind

function Discrete_Range_Kind
function Expression_Kind
function Operator_Kind

function Attribute_Kind

function Association_Kind
function Statement_Kind

function Path_Kind

function Clause_Kind

function Representation_Clause_Kind
function Is_Nil

function Is_Nil

function Is_Equal

function Is_Identical

function Is_Part_Of_Implicit
function Is_Part_Of_Inherited
function Is_Part_Of_Instance
function Enclosing_Element
function Pragmas

function Corresponding_Pragmas
function Pragma_Name_Image
function Pragma_Argument_Associations
function Debug_Image

function Hash

procedure Traverse_Element

function Names

function Defining_Name_Image
function Position_Number_Image
function Representation_Value_Image
function Defining_Prefix

function Defining_Selector

function Discriminant_Part

function Type_Declaration_View
function Object_Declaration_View
function Initialization_Expression

function Corresponding_Constant_Declaration

function Declaration_Subtype Mark
function Corresponding_Type_Declaration
function Corresponding_First_Subtype
function Corresponding_Last_Constraint
function Corresponding_Last_Subtype

function Corresponding_Representation_Clauses

function Specification_Subtype_Definition
function Parameter_Profile

function Result_Profile

function Body_Declarative_ltems

© ISO/IEC

© ISO/IEC

15.22
15.23
15.24
15.25
15.26
15.27
15.28
15.29
15.30
15.31
15.32
15.33
15.34
15.35
15.36
15.37
15.38
15.39
15.40
15.41
15.42
15.43
15.44
15.45
15.46
15.47
15.48

16 PACKAGE ASIS.DEFINITIONS

16.1
16.2
16.3
16.4
16.5
16.6
16.7
16.8
16.9
16.10
16.11
16.12
16.13
16.14
16.15
16.16
16.17
16.18
16.19
16.20
16.21
16.22
16.23
16.24
16.25
16.26

function Body_ Statements

function Body_Exception_Handlers
function Body Block Statement

function Is_Name_Repeated

function Corresponding_Declaration
function Corresponding_Body

function Corresponding_Subprogram_Derivation
function Corresponding_Type

function Corresponding_Equality Operator
function Visible_Part_Declarative_Items
function Is_Private_Present

function Private_Part_Declarative_Items
function Renamed_Entity

function Corresponding_Base_Entity
function Protected_Operation_ltems
function Entry_Family_Definition

function Entry_Index_Specification
function Entry_Barrier

function Corresponding_Subunit

function Is_Subunit

function Corresponding_Body_Stub
function Generic_Formal_Part

function Generic_Unit_Name

function Generic_Actual_Part

function Formal_Subprogram_Default
function Corresponding_Generic_Element
function Is_Dispatching_Operation

function Corresponding_Type_Operators
function Parent_Subtype_Indication
function Record_Definition

function Implicit_Inherited_Declarations
function Implicit_Inherited_Subprograms
function Corresponding_Parent_Subtype
function Corresponding_Root_Type
function Corresponding_Type_Structure
function Enumeration_Literal_Declarations
function Integer_Constraint

function Mod_ Static_Expression

function Digits_Expression

function Delta_Expression

function Real_Range_Constraint

function Index_Subtype_Definitions
function Discrete_Subtype_Definitions
function Array_Component_Definition
function Access_To_Object_Definition
function Access_To_Subprogram_Parameter_Profile
function Access_To_Function_Result_Profile
function Subtype_Mark

function Subtype_Constraint

function Lower_Bound

function Upper_Bound

function Range_Attribute

function Discrete_Ranges

ISO/IEC 15291:1999(E)

121
122
122
123
123
125
127
127
128
128
129
129
130
130
131
132
133
133
133
134
134
135
137
137
138
139
139

140
141
141
141
142
143
143
144
144
145
145
145
146
146
147
147
147
148
148
149
149
150
150
151
151
152

Vil

ISO/IEC 15291:1999(E)

16.27
16.28
16.29
16.30
16.31
16.32
16.33
16.34
16.35
16.36
16.37
16.38

17 PACKAGE ASIS.EXPRESSIONS

171

17.2

17.3

17.4

17.5

17.6

17.7

17.8

17.9

17.10
17.11
17.12
17.13
17.14
17.15
17.16
17.17
17.18
17.19
17.20
17.21
17.22
17.23
17.24
17.25
17.26
17.27
17.28
17.29
17.30
17.31
17.32
17.33
17.34
17.35
17.36
17.37
17.38
17.39

viii

function Discriminant_Associations
function Component_Subtype_Indication
function Discriminants

function Record_Components
function Implicit_Components
function Discriminant_Direct_Name
function Variants

function Variant_Choices

function Ancestor_Subtype_Indication
function Visible_Part_Items

function Private_Part_Items

function Is_Private_Present

function Corresponding_Expression_Type
function Value_Image

function Name_Image

function References

function Is_Referenced

function Corresponding_Name_Definition
function Corresponding_Name_Definition_List
function Corresponding_Name_Declaration
function Prefix

function Index_Expressions

function Slice_Range

function Selector

function Attribute_Designator_ldentifier
function Attribute_Designator_Expressions
function Record_Component_Associations
function Extension_Aggregate_Expression
function Array_Component_Associations
function Array_Component_Choices

function Record_Component_Choices
function Component_Expression

function Formal_Parameter

function Actual _Parameter

function Discriminant_Selector_Names
function Discriminant_Expression

function Is_Normalized

function Is_Defaulted_Association

function Expression_Parenthesized

function Is_Prefix_Call

function Corresponding_Called_Function
function Function_Call_Parameters

function Short_Circuit_Operation_Left _Expression
function Short_Circuit_Operation_Right_Expression
function Membership_Test _Expression
function Membership_Test_Range

function Membership_Test Subtype_Mark
function Converted_Or_Qualified_Subtype Mark
function Converted_Or_Qualified_Expression
function Allocator_Subtype_Indication
function Allocator_Qualified_Expression

© ISO/IEC

152
153
154
154
155
155
156
156
157
157
157
158

159
160
160
161
161
162
164
164
165
165
166
166
166
167
167
168
168
169
169
170
170
171
172
173
173
174
174
175
175
176
177
177
177
178
178
178
179
179
179

© ISO/IEC

18 PACKAGE ASIS.STATEMENTS

18.1

18.2

18.3

18.4

18.5

18.6

18.7

18.8

18.9

18.10
18.11
18.12
18.13
18.14
18.15
18.16
18.17
18.18
18.19
18.20
18.21
18.22
18.23
18.24
18.25
18.26
18.27
18.28
18.29
18.30
18.31
18.32
18.33
18.34
18.35
18.36
18.37
18.38
18.39
18.40
18.41
18.42
18.43

19 PACKAGE ASIS.CLAUSES

191
19.2
19.3
19.4
19.5
19.6
19.7

function Label_Names

function Assignment_Variable_Name
function Assignment_Expression

function Statement_Paths

function Condition_Expression

function Sequence_Of_ Statements
function Case_Expression

function Case_Statement_Alternative_Choices
function Statement_Identifier

function Is_Name_Repeated

function While_Condition

function For_Loop_Parameter_Specification
function Loop_Statements

function Is_Declare_Block

function Block_Declarative_Items

function Block_Statements

function Block_Exception_Handlers
function Exit_Loop_Name

function Exit_Condition

function Corresponding_Loop_Exited
function Return_Expression

function Goto_Label

function Corresponding_Destination_Statement
function Called_Name

function Corresponding_Called_Entity
function Call_Statement_Parameters
function Accept_Entry_Index

function Accept_Entry Direct_Name
function Accept_Parameters

function Accept_Body_Statements

function Accept_Body_ Exception_Handlers
function Corresponding_Entry

function Requeue_Entry_Name

function Delay_Expression

function Guard

function Aborted_Tasks

function Choice_Parameter_Specification
function Exception_Choices

function Handler_Statements

function Raised_Exception

function Qualified_Expression

function Is_Dispatching_Call

function Is_Call_On_Dispatching_Operation

function Clause_Names

function Representation_Clause_Name
function Representation_Clause_Expression
function Mod_Clause_Expression

function Component_Clauses

function Component_Clause_Position
function Component_Clause_Range

ISO/IEC 15291:1999(E)

181
181
181
182
182
182
183
183
183
184
184
184
185
185
185
186
186
186
187
187
187
188
188
188
189
190
191
191
191
192
192
192
193
193
193
194
194
194
195
195
195
196
196

197
197
198
198
198
199
199

ISO/IEC 15291:1999(E)

20 PACKAGE ASIS.TEXT

20.1
20.2
20.3
20.4
20.5
20.6
20.7
20.8
20.9
20.10
20.11
20.12
20.13
20.14
20.15
20.16
20.17
20.18
20.19
20.20
20.21
20.22
20.23
20.24
20.25
20.26
20.27
20.28

21 PACKAGE ASIS.IDS

21.1
21.2
21.3
21.4
21.5
21.6
21.7
21.8
21.9

22 PACKAGE ASIS.DATA_DECOMPOSITION (OPTIONAL)

22.1
22.2
22.3
22.4
22,5
22.6
22.7
22.8
22.9
22.10
22.11
22.12
22.13

type Line

type Line_Number

type Line_Number_Positive
type Line_List

type Character_Position

type Character_Position_Positive
type Span

function First_Line_Number
function Last_Line_Number
function Element_Span
function Compilation_Unit_Span
function Compilation_Span
function Is_Nil

function Is_Nil

function Is_Nil

function Is_Equal

function Is_Identical

function Length

function Lines

function Lines

function Lines

function Delimiter_Image
function Element_Image
function Line_Image

function Non_Comment_Image
function Comment_Image
function Is_Text_Available
function Debug_Image

type Id

function Hash

function "<"

function ">"

function Is_Nil

function Is_Equal
function Create_Id
function Create_Element
function Debug_Image

type Record_Component
type Record_Component_List
type Array_Component

type Array_Component_List
type Dimension_Indexes

type Array_Component_Iterator
type Portable_Data

type Type_Model_Kinds
function Type_Model_Kind
function Is_Nil

function Is_Equal

function Is_Identical

function Is_Array

© ISO/IEC

200
200
201
201
201
201
201
202
202
202
203
203
203
203
204
204
204
204
204
205
206
206
206
207
207
207
208
208

209
209
209
209
210
210
210
210
211

214
214
215
215
215
216
216
218
218
218
218
219
219

© ISO/IEC

22.14
22.15
22.16
22.17
22.18
22.19
22.20
22.21
22.22
22.23
22.24
22.25
22.26
22.27
22.28
22.29
22.30
22.31
22.32
22.33
22.34
22.35
22.36
22.37

23 PACKAGE ASIS.DATA_DECOMPOSITION.PORTABLE_TRANSFER

23.1 generic package Portable_Constrained_Subtype
23.2 generic package Portable_Unconstrained_Record_Type
23.3 generic package Portable_Array Type 1
23.4 generic package Portable_Array Type 2
23.5 generic package Portable_Array Type 3
ANNEXES
A GLO S S AR e

B ASIS APPLICATION EXAMPLES

function Is_Record

function Done

procedure Next

procedure Reset

function Array_Index

function Array_Indexes

function Discriminant_Components
function Record_Components
function Record_Components
function Array_Components
function Array_Iterator

function Component_Data_Stream
function Component_Declaration
function Component_Indication
function All_Named_Components
function Array_Length

function Array_Length

function Size

function Size

function Position

function First_Bit

function Last_Bit

function Portable_Constrained_Subtype
function Construct_Artificial Data_Stream

B.1 Use to traverse compilation unit
B.2 Use to build call tree

C MISCELLANEOUS ASIS 1/0 AND IDL APPROACHES

C.1 package Portable_Data_lo
C.2 package Asis.lds.ld_lo
C.3 Implementation approach for IDL

C31
C.3.2
C.33
C34
C.35

ASIS API server

ASIS API client tool

Approach to implement the Traverse_Element generic
IDL to implement the Traverse_Element generic

Ada code output by the IDL compiler

ISO/IEC 15291:1999(E)

219
220
220
220
220
220
221
221
222
223
223
224
224
225
225
225
226
226
226
227
227
228
228
229

231

231
231
232
232
232

Xi

ISO/IEC 15291:1999(E) © ISO/IEC
D RATIONALE .o e et e e e e ea e e eaa e eees 254
D.1 Benefits of code analysis 254
D.1.1 Definition 254
D.1.2 Applicability 254
D.1.3 Motivation 255
D.2 Technology for code analysis 255
D.2.1 Code parsers 255
D.2.2 DIANA 256
D.2.3 LRMk-interface 257
D.2.4 ASIS 257
D.2.5 Benefits of ASIS standard 259
D.3 Design considerations for ASIS 259
D.3.1 Design goals 259
D.3.2 Major changes from ASIS for ISO 8652:1987 261
D.3.3 Essence of Ada and ASIS 261
D.4 Major issues regarding ASIS 262
D.4.1 Ada environment and compilation units 262
D.4.2 ASIS context and inconsistency 262
D.4.3 Implicit declarations 264
D.4.4 Abstract "=" for private types 264
D.4.5 Usage names and expressions 265
D.4.6 Select alternative 265
D.4.7 Attribute definition clauses 265
D.4.8 Configuration pragmas 265
D.4.9 Queries with additional context parameter 266
D.4.10 Ids 266
D.4.11 Data decomposition 266
D.5 Conclusion 267
D.6 Acronyms 268
BIBLIOGRAPHY e eaas 269
IN D E X et a e ae 270
Figures
Figure 1 ASIS implementation permissions 7
Figure 2 ASIS as interface to Ada compilation environment 10
Figure 3 Application interface to ASIS Context 11
Figure 4 Syntactic tree representation of an Ada object declaration 13
Figure 5 Operations on elements 15
Figure 6 Semantic reference using corresponding queries 17
Figure 7 ASIS package architecture 18
Figure C.1 Generation of client/server ASIS artifacts 250

Xii

© ISO/IEC ISO/IEC 15291:1999(E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are
members of ISO or IEC participate in the development of International Standards through
technical committees established by the respective organization to deal with particular fields of
technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other
international organizations, governmental and non-governmental, in liaison with ISO and IEC, also
take part in the work.

In the field of information technology, ISO and IEC have established a joint technical committee,
ISO/IEC JTC 1. Draft International Standards adopted by the joint technical committee are
circulated to national bodies for voting. Publication as an International Standard requires approval
by at least 75% of the national bodies casting a vote.

International Standard ISO/IEC 15291 was prepared by Joint Technical Committee ISO/IEC
JTC 1, Information technology, Subcommittee 22, Programming languages, their environments
and system software interfaces.

Annexes A, B, C, and D of this International Standard are for information only.

Xiii

ISO/IEC 15291:1999(E) © ISO/IEC

Introduction

The Ada Semantic Interface Specification (ASIS) is an interface between an Ada environment (as
defined by ISO/IEC 8652:1995) and any tool requiring information from it. An Ada environment
includes valuable semantic and syntactic information. ASIS is an open and published callable
interface which gives CASE tool and application developers access to this information. ASIS has
been designed to be independent of underlying Ada environment implementations, thus
supporting portability of software engineering tools while relieving tool developers from needing to
understand the complexities of an Ada environment’s proprietary internal representation.

Examples of tools that benefit from the ASIS interface include: automated code monitors,
browsers, call tree tools, code reformators, coding standards compliance tools, correctness
verifiers, debuggers, dependency tree analysis tools, design tools, document generators, metrics
tools, quality assessment tools, reverse engineering tools, re-engineering tools, style checkers,
test tools, timing estimators, and translators.

The word “may” as used in this International Standard consistently means “is allowed to” (or “are
allowed to”). It is used only to express permission, as in the commonly occurring phrase “an
implementation may”; other words (such as “can,” “could” or “might”) are used to express ability,
possibility, capacity, or consequentiality.

The ASIS interface consists of a set of types, subtypes, and subprograms which provide a
capability to query the Ada compilation environment for syntactic and semantic information.
Package Asis is the root of the ASIS interface. It contains common types used throughout the
ASIS interface. Important common abstractions include Context, Element, and Compilation_Unit.
Type Context helps identify the compilation units considered to be analyzable as part of the Ada
compilation environment. Type Element is an abstraction of entities within a logical Ada syntax
tree. Type Compilation_Unit is an abstraction for Ada compilation units. In addition, there are two
sets of enumeration types called Element Kinds and Unit Kinds. Element Kinds are a set of
enumeration types providing a mapping to the Ada syntax. Unit Kinds are a set of enumeration
types describing the various kinds of compilation units.

All ASIS subprogram interfaces are provided using child packages. Some child packages also
contain type and subtype interfaces local to the child package.

The child package Asis.Implementation provides queries to initialize, finalize, and query the error
status of the ASIS implementation. The child package Asis.Ada_Environments encapsulates a set
of queries that map physical Ada compilation and program execution environments to logical ASIS
environments.

The child package Asis.Compilation_Units defines queries that deal with compilation units and
serves as the gateway between Compilation_Units, Elements, and Ada_Environments. The child
package Asis.Compilation_Units.Times encapsulates the time related functions used within ASIS.
The child package Asis.Compilation_Units.Relations encapsulates semantic relationship concepts
used in ASIS.

The child package Asis.Elements defines general Element queries and queries for pragmas. It
provides information on the element kinds for further semantic analysis.

The child package Asis.lterator provides a mechanism to perform an iterative traversal of a logical
syntax tree. During the syntax tree traversal, ASIS can analyze the various elements contained
within the syntax tree. ASIS can provide the application additional processing via generic
procedures, which are instantiated by the application. These additional processing queries

Xiv

© ISO/IEC ISO/IEC 15291:1999(E)

decompose as ASIS elements from the logical Ada semantic tree. Queries are provided in the

child packages: Clauses, Declarations, Definitions, Expressions, and Statements.

« child package Asis.Clauses - Defines queries dealing with context clauses and representation
clauses.

» child package Asis.Declarations - Defines queries dealing with Ada declarations.

« child package Asis.Definitions - Defines queries dealing with the definition portion of Ada
object, type, and subtype declarations.

« child package Asis.Expressions - Defines all queries dealing with Ada expressions.
» child package Asis.Statements - Defines queries dealing with Ada statements.

The child package Asis.Text encapsulates a set of operations to access the text of ASIS
elements. It defines the operations for obtaining compilation text spans, lines, and images of
elements.

The child package Asis.lds provides a mechanism to efficiently reference ASIS elements in a
persistent manner.

To support portability amongst a variety of implementors’ compilation environments, certain types
and constants have been identified as implementation-defined.

The child package Asis.Errors defines the kinds of errors. The exceptions that can be raised
across the ASIS interface are defined in the child package Asis.Exceptions.

The interface supports one optional child package and its single child package:

» child package Asis.Data_Decomposition - The interface also includes an optional capability to
decompose data values using the ASIS type information and portable data stream,
representing a data value of that type.

XV

INTERNATIONAL STANDARD ©ISO/IEC ISO/IEC 15291:1999(E)

Information technology —
Programming languages —
Ada Semantic Interface Specification (ASIS)

1 General

1.1 Scope

The Ada Semantic Interface Specification (ASIS) is an interface between an Ada environment (as
defined by ISO/IEC 8652:1995) and any tool requiring information from this environment. An Ada
environment includes valuable semantic and syntactic information. ASIS is an open and published
callable interface which gives CASE tool and application developers access to this information.
ASIS has been designed to be independent of underlying Ada environment implementations, thus
supporting portability of software engineering tools while relieving tool developers from needing to
understand the complexities of an Ada environment’s proprietary internal representation.

Examples of tools that benefit from the ASIS interface include: automated code monitors,
browsers, call tree tools, code reformators, coding standards compliance tools, correctness
verifiers, debuggers, dependency tree analysis tools, design tools, document generators, metrics
tools, quality assessment tools, reverse engineering tools, re-engineering tools, safety and security
tools, style checkers, test tools, timing estimators, and translators.

This International Standard specifies the form and meaning of the ASIS interface to the Ada
compilation environment.

This International Standard is applicable to tools and applications needing syntactic and semantic
information in the Ada compilation environment.

111 Extent

This International Standard specifies:
e The form of the ASIS interface;

e Sequencing of ASIS calls;

e The permissible variations within this International Standard, and the manner in which they are
to be documented;

e Those violations of this International Standard that a conforming implementation is required to
detect, and the effect of attempting to execute a program containing such violations;

This International Standard does not specify:
e Semantics of the interface in the face of simultaneous updates to the Ada compilation
environment.

* Semantics of the interface for more than one thread of control.

ISO/IEC 15291:1999(E) © ISO/IEC

1.1.2 Structure
This International Standard contains twenty-three clauses and four annexes.

Clause 1 is general in nature providing the scope of this International Standard, normative
references, and definitions.

Clause 2 identifies the ASIS technical concepts. Here the Ada compilation environment to which
ASIS interfaces is described. The concept of queries is presented. The ASIS package architecture
is presented.

The packages that comprise the ASIS International Standard are provided in Clauses 3 through
23. These packages are provided in the correct compilation order and when presented in
electronic format are compilable.

e Clause 3 package Asis

 Clause4 package Asis.Errors

e Clause5 package Asis.Exceptions

e Clause 6 package Asis.Implementation

e Clause 7 package Asis.Implementation.Permissions

e« Clause 8 package Asis.Ada_Environments

e Clause 9 package Asis.Ada_Environments.Containers
e Clause 10 package Asis.Compilation_Units

¢« Clause 11 package Asis.Compilation_Units.Times

e Clause 12 package Asis.Compilation_Units.Relations

e Clause 13 package Asis.Elements

e Clause 14 package Asis.lterator

¢« Clause 15 package Asis.Declarations

* Clause 16 package Asis.Definitions

 Clause 17 package Asis.Expressions

e Clause 18 package Asis.Statements

¢« Clause 19 package Asis.Clauses

e Clause 20 package Asis.Text

e« Clause 21 package Asis.lds

« Clause 22 package Asis.Data_Decomposition (optional package)
¢ Clause 23 package Asis.Data_Decomposition.Portable_Transfer

The following annexes are informative:

Annex A: Glossary

Annex B: ASIS Application Examples

Annex C: Miscellaneous ASIS I/O and IDL Approaches
Annex D: Rationale

The major package interfaces visible to ASIS users are identified as clauses facilitating access
from the table of contents.

© ISO/IEC ISO/IEC 15291:1999(E)

The ASIS interface is compilable. Consequently, Sentinels have been used to mark portions of the
ASIS text with comments appropriate to an ASIS implementor and an ASIS user.

The sentinels and their meanings are:

--|ER (Element Reference) These comments mark an element kind reference which acts as a
header for those queries that work on this element kind.

--|CR (Child Reference) These sentinel comments follow sentinel comments marking element
references (--ER) and reference child element queries that decompose the element into
its children.

--]AN (Application Note) These comments describe suggested uses, further analysis, or other
notes of interest to ASIS applications.

--|IP (Implementation Permissions) These comments describe permissions given an
implementor when implementing the associated type or query.

-|IR (Implementation Requirements) These comments describe additional requirements for
conforming implementations.

1.1.3 Conformit y with this International Standard

1131 Implementation conformance requirements

An ASIS implementation includes all the hardware and software that implements the ASIS
specification for a given Ada implementation and that provides the functionality required by the
ASIS specification. An ASIS implementor is a company, institution, or other group (such as a
vendor) who develops an ASIS implementation. A conforming ASIS implementation shall meet all
of the following criteria:

a) The system shall support all required interfaces defined within this International Standard.
These interfaces shall support the functional behavior described herein. All interfaces in the
ASIS specification are required unless the interface is specifically identified as being optional.
The ASIS specification defines one optional package: Asis.Data_Decomposition.
Asis.Data_Decomposition has one child package,
Asis.Data_Decomposition.Portable_Transfer.

b) The system may provide additional facilities not required by this International Standard.
Extensions are non-standard facilities (e.g., other library units, non-standard children of
standard ASIS library units, subprograms, etc.) which provide additional information from ASIS
types, or modify the behavior of otherwise standard ASIS facilities to provide alternative or
additional functionality. Nonstandard extensions shall be identified as such in the system
documentation. Nonstandard extensions, when used by an application, may change the
behavior of functions or facilities defined by this International Standard. The conformance
document shall define an environment in which an application can be run with the behavior
specified by this International Standard. In no case except package name conflicts shall such
an environment require modification of a Basic Conforming or Fully Conforming ASIS
Application. An implementation shall not change package specifications in this International
Standard except by:

« Adding “with” clauses, pragmas, representation specifications, comments, and
allowable pragmas. Allowable pragmas are those which do not change the semantics
of the interface (e.g., List, Optimize, Page).

« Replacing instances of the words <implementation-defined> with appropriate value(s).

e Adding or changing private parts.

« Making any other changes that are lexically transparent to Ada compilers.

ISO/IEC 15291:1999(E) © ISO/IEC

¢) An ASIS implementation shall not raise Program_Error on elaboration of an ASIS package, or
on execution of an ASIS subprogram, due to elaboration order dependencies in the ASIS
implementation.

d) Except as explicitly provided for in this International Standard, Standard.Storage_Error is the
only exception that should be raised by operations declared in this International Standard.

e) When executed, an implementation of this International Standard shall not be erroneous, as
defined by ISO/IEC 8652:1995.

1.1.3.2 Implementation conformance documentation

A conformance document shall be available for an implementation claiming conformance to this
International Standard. The conformance document shall have the same structure as this
International Standard, with the information presented in the equivalently numbered clauses, and
subclauses. The conformance document shall not contain information about extended facilities or
capabilities outside the scope of this International Standard.

The conformance document shall contain a statement that indicates the full name, number, and
date of the International Standard that applies. The conformance document may also list software
standards approved by ISO/IEC or any ISO/IEC member body that are available for use by a Basic
or Fully Conforming ASIS Application. Applicable characteristics whose documentation is required
by one of these standards, or by standards of government bodies, may also be included.

The conformance document shall describe the behavior of the implementation for all
implementation-defined features defined in this International Standard. This requirement shall be
met by listing these features and providing either a specific reference to the system documentation
or providing full syntax and semantics of these features. The conformance document shall specify
the behavior of the implementation for those features where this International Standard states that
implementations may vary.

No specifications other than those described in this subclause shall be present in the conformance
document.

The phrase “shall be documented” in this International Standard means that documentation of the
feature shall appear in the conformance document, as described previously, unless the system
documentation is explicitly mentioned.

The system documentation should also contain the information found in the conformance
document.

1.1.33 Implementation conformance categories

An implementation is required to define all of the subprograms for all of the operations defined in
this International Standard, including those whose implementation is optional. Required
functionality is the subset of ASIS facilities which are not explicitly identified in the ASIS standard
as optional. Optional functionality is the subset of ASIS facilities which are explicitly identified in the
ASIS standard as optional which may legitimately be omitted from a Basic Conforming ASIS
implementation. Optional interfaces shall be included in any Fully Conforming ASIS
implementation, unless stated otherwise in the ASIS specification. An application that accesses an
Ada environment’s semantic tree (e.g., Diana Tree) directly using work-arounds is not considered
to be a conformant application. All Conforming Applications fall within one of the categories
defined below.

If an unimplemented feature is used, the exception Asis.ASIS_Failed shall be raised and
Asis.Implementation_Status shall return the value for Error_Kinds of Not_Implemented_Error.

There are four categories of conforming ASIS implementations:

© ISO/IEC ISO/IEC 15291:1999(E)

1.1.3.3.1 Basic conforming ASIS implementation
A Basic Conforming ASIS Implementation is an ASIS implementation supporting all required
interfaces defined within this International Standard.

1.1.3.3.2 Fully conforming ASIS implementation
A Fully Conforming ASIS Implementation is an ASIS implementation supporting all required and all
optional interfaces defined within this International Standard.

1.1.3.3.3 Basic conforming ASIS implementation using extensions

A Basic Conforming ASIS Implementation Using Extensions is an ASIS implementation that differs
from a Basic Conforming ASIS Implementation only in that it uses nonstandard extensions that are
consistent with this International Standard. Such an implementation shall fully document its
extended facilities, in addition to the documentation required for a Basic Conforming ASIS
Implementation.

1.1.3.3.4 Fully conforming ASIS implementation using extensions

A Fully Conforming ASIS Implementation Using Extensions is an ASIS implementation that differs
from a Fully Conforming ASIS Implementation only in that it uses nonstandard extensions that are
consistent with this International Standard. Such an implementation shall fully document its
extended facilities, in addition to the documentation required for a Fully Conforming ASIS
Implementation.

1.1.34 Application conformance categories

An ASIS application is any programming system or any set of software components making use of
ASIS queries to obtain information about any set of Ada components. All ASIS applications
claiming conformance to this International Standard shall use a Conforming ASIS Implementation
with or without extensions.

1.1.3.4.1 Basic conforming ASIS application
A Basic Conforming ASIS Application is an application that only uses the required facilities defined
within this International Standard. It shall be portable to any Conforming ASIS Implementation.

1.1.3.4.2 Fully conforming ASIS application

A Fully Conforming ASIS Application is an application that only uses the required facilities and the
optional facilities defined within this International Standard. It shall be portable to any Fully
Conforming ASIS Implementation.

1.1.3.4.3 Basic conforming ASIS application using extensions

A Basic Conforming ASIS Application Using Extensions is an application that differs from a Basic
Conforming ASIS Application only in that it uses nonstandard, implementation provided, extended
facilities that are consistent with this International Standard. Such an application should fully
document its requirements for these extended facilities. A Basic Conforming ASIS Application
Using Extensions may or may not be portable to other Basic or Fully Conforming ASIS
Implementation Using Extensions.

1.1.3.4.4 Fully conforming ASIS application using extensions

A Fully Conforming ASIS Application Using Extensions is an application that differs from a Fully
Conforming ASIS Application only in that it uses nonstandard, implementation provided, extended
facilities that are consistent with this International Standard. Such an application should fully
document its requirements for these extended facilities. A Fully Conforming ASIS Application
Using Extensions may or may not be portable to other Fully Conforming ASIS Implementation
Using Extensions.

ISO/IEC 15291:1999(E) © ISO/IEC

114 Implementation permissions

The ASIS Application Program Interface (API) may be implemented through a variety of
approaches. Approaches permitted by this International Standard are based on the traditional
approach and the client /server approach. These implementation permissions are depicted in
Figure 1 and described below:

1.14.1 Traditional approach (permission 1)

Traditionally, the ASIS APl implementation is intended to execute on the node containing the
implementor’s Ada software engineering environment and the desired Ada compilation
environment. Because the ASIS API interfaces directly, ASIS performs at its best. It is expected
that most ASIS implementors will support this approach as it requires little additional effort when
alternative approaches are supported. In Figure 1, the client tool using Permission 1 uses the
ASIS specification exactly as specified in this International Standard. ASIS tools and applications
are compiled in the implementor's environment.

1.1.4.2 Client / server approach (permission 2)

As an alternative, a client / server approach can be used to implement the ASIS API. Here the
ASIS API is supported by a server; ASIS client tools can request ASIS services within the
supported network.

Figure 1 identifies four ASIS client tools using permission 2 capable of interfacing with an ASIS
Object Request Broker (ORB) server. One client tool is written in Ada, one in Java, one in C++,
and one in Smalltalk. The ORB serves as a broker between the client and server on a network
consisting of many nodes. Server location and services are registered with the ORB. A client
needing the services interfaces with the ORB, who brokers the needed server interface
information. The interface between a client and server is written as an interface specification in the
Interface Definition Language (IDL). IDL is very different from most computer languages; when
IDL is compiled, the interface specification is produced in either Ada, Java, C++, or Smalltalk. In
addition, the necessary artifacts are produced to register the client or server interface with the
ORB.

1.1.4.3 Distributed traditional approach (permission 3)

The Ada specification created by the compilation of this ASIS APl in IDL is semantically equivalent
to this ASIS standard, but not syntactically identical. An ASIS Client tool written in Ada interfaces
to the ASIS API as specified in this International Standard. As shown in Figure 1, the ASIS API
encapsulates the ASIS ORB client as generated from the compilation of the ASIS IDL into Ada.
Client tools using either permission 1 or permission 3 are, most likely, identical. Client tools
developed using permission 3 can be developed as plug and play.

1.1.4.4 ASIS dynamic client approach (permission 4)

In addition to using traditional compiled tools through the client / server interface, ORBs can
provide a Dynamic Interface Invocation (DIl) capability where rather general purpose tools can
access the interface dynamically. Shown in Figure 1, such a tool behaves more like a browser. It
accesses the ASIS IDL as registered with the server and browses through the services provided
by the ASIS interface. Use of this capability with ASIS is extremely cumbersome and manually
intensive. However, this provides a user access to information across the interface that had not
been preprogrammed by a tool.

© ISO/IEC

ISO/IEC 15291:1999(E)

Client Tool
written
in Ada
(Permission 3)
Client Tool Client Tool Client Tool Client Tool +
written written written written
in Java in Smalltalk in C++ in Ada ASIS
(Permission 2) (Permission 2) (Permission 2) (Permission 2) (this standard)
¢ ¢ i Encapsulating |
ASISORB ASISORB ASISORB ASISORB ASISORB
Client Client Client Client Client
as Java as Smalltalk as C++ asAda using DI
Source Code Source Code Source Code Source Code (Permission 4)

'

i

'

Object Request Broker (ORB)

'

ASISORB Client Tool
Server written
asAda in Ada
Specification (Permission 1)
Encapsulating ¢
ASIS
(this standard)
withbody |g—
Provided by
Implementor

Figure 1 — ASIS implementation permissions

ISO/IEC 15291:1999(E) © ISO/IEC

1.15 Classification of errors

ASIS reports all operational errors by raising an exception. Whenever an ASIS implementation
raises one of the exceptions declared in package Asis.Exceptions, it will previously have set the
values returned by the Status and Diagnosis queries to indicate the cause of the error. The
possible values for Status are indicated here along with suggestions for the associated contents of
the Diagnosis string.

ASIS applications are encouraged to follow this same convention whenever they explicitly raise
any ASIS exception to always record a Status and Diagnosis prior to raising the exception. Values
of errors along with their general meanings are:

Not_An_Error -- No error is presently recorded
Value_Error -- Routine argument value invalid
Initialization_Error -- ASIS is uninitialized
Environment_Error -- ASIS could not initialize
Parameter_Error -- Bad Parameter given to Initialize
Capacity_Error -- Implementation overloaded
Name_Error -- Context/unit not found

Use Error -- Context/unit not use/open-able
Data_Error -- Context/unit bad/invalid/corrupt
Text_Error -- The program text cannot be located
Storage_Error -- Storage_Error suppressed
Obsolete_Reference_Error -- Semantic reference is obsolete
Unhandled_Exception_Error -- Unexpected exception suppressed
Not_Implemented_Error -- Functionality not implemented
Internal_Error -- Implementation internal failure

Diagnostic messages may be more specific.
A set of exceptions shall be raised for the following circumstances:

* ASIS_Inappropriate_Context - Raised when ASIS is passed a Context value that is not
appropriate for the operation. This exception typically indicates that a user error has occurred
within the application.

e ASIS_Inappropriate_Compilation_Unit - Raised when ASIS is passed a Compilation_Unit
value that is not appropriate. This exception typically indicates that a user error has occurred
within the application.

* ASIS_Inappropriate_Element - Raised when ASIS is given an Element value that is not
appropriate. This exception typically indicates that a user error has occurred within the
application.

e ASIS_Inappropriate_Line - Raised when ASIS is given a Line value that is not appropriate.

e ASIS_Inappropriate_Line_Number - Raised when ASIS is given a Line_Number value that
is not appropriate. This exception typically indicates that a user error has occurred within the
application.

* ASIS_Failed - All ASIS routines may raise ASIS_Failed whenever they cannot normally
complete their operation. This exception typically indicates a failure of the underlying ASIS
implementation. This is a catch-all exception that is raised for different reasons in different
ASIS implementations.

© ISO/IEC ISO/IEC 15291:1999(E)

1.2 Normative reference

The following standard contains provisions which, through reference in this text, constitute
provisions of this International Standard. At the time of publication, the edition indicated was valid.
All standards are subject to revision, and parties to agreements based on this standard are
encouraged to investigate the possibility of applying the most recent edition of the International
Standard indicated below. Members of IEC and ISO maintain registers of currently valid
International Standards.

ISO/IEC 8652:1995, Information technology — Programming languages — Ada.

