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Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are
members of ISO or IEC participate in the development of International Standards through
technical committees established by the respective organization to deal with particular fields of
technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other
international organizations, governmental and non-governmental, in liaison with ISO and IEC, also
take part in the work.

In the field of information technology, ISO and IEC have established a joint technical committee,
ISO/IEC JTC 1. Draft International Standards adopted by the joint technical committee are
circulated to national bodies for voting. Publication as an International Standard requires approval
by at least 75% of the national bodies casting a vote.

International Standard ISO/IEC 15291 was prepared by Joint Technical Committee ISO/IEC
JTC 1, Information technology, Subcommittee 22, Programming languages, their environments
and system software interfaces.

Annexes A, B, C, and D of this International Standard are for information only.
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Introduction

The Ada Semantic Interface Specification (ASIS) is an interface between an Ada environment (as
defined by ISO/IEC 8652:1995) and any tool requiring information from it. An Ada environment
includes valuable semantic and syntactic information. ASIS is an open and published callable
interface which gives CASE tool and application developers access to this information. ASIS has
been designed to be independent of underlying Ada environment implementations, thus
supporting portability of software engineering tools while relieving tool developers from needing to
understand the complexities of an Ada environment’s proprietary internal representation.

Examples of tools that benefit from the ASIS interface include: automated code monitors,
browsers, call tree tools, code reformators, coding standards compliance tools, correctness
verifiers, debuggers, dependency tree analysis tools, design tools, document generators, metrics
tools, quality assessment tools, reverse engineering tools, re-engineering tools, style checkers,
test tools, timing estimators, and translators.

The word “may” as used in this International Standard consistently means “is allowed to” (or “are
allowed to”). It is used only to express permission, as in the commonly occurring phrase “an
implementation may”; other words (such as “can,” “could” or “might”) are used to express ability,
possibility, capacity, or consequentiality.

The ASIS interface consists of a set of types, subtypes, and subprograms which provide a
capability to query the Ada compilation environment for syntactic and semantic information.
Package Asis is the root of the ASIS interface. It contains common types used throughout the
ASIS interface. Important common abstractions include Context, Element, and Compilation_Unit.
Type Context helps identify the compilation units considered to be analyzable as part of the Ada
compilation environment. Type Element is an abstraction of entities within a logical Ada syntax
tree. Type Compilation_Unit is an abstraction for Ada compilation units. In addition, there are two
sets of enumeration types called Element Kinds and Unit Kinds. Element Kinds are a set of
enumeration types providing a mapping to the Ada syntax. Unit Kinds are a set of enumeration
types describing the various kinds of compilation units.

All ASIS subprogram interfaces are provided using child packages. Some child packages also
contain type and subtype interfaces local to the child package.

The child package Asis.Implementation provides queries to initialize, finalize, and query the error
status of the ASIS implementation. The child package Asis.Ada_Environments encapsulates a set
of queries that map physical Ada compilation and program execution environments to logical ASIS
environments.

The child package Asis.Compilation_Units defines queries that deal with compilation units and
serves as the gateway between Compilation_Units, Elements, and Ada_Environments. The child
package Asis.Compilation_Units.Times encapsulates the time related functions used within ASIS.
The child package Asis.Compilation_Units.Relations encapsulates semantic relationship concepts
used in ASIS.

The child package Asis.Elements defines general Element queries and queries for pragmas. It
provides information on the element kinds for further semantic analysis.

The child package Asis.lterator provides a mechanism to perform an iterative traversal of a logical
syntax tree. During the syntax tree traversal, ASIS can analyze the various elements contained
within the syntax tree. ASIS can provide the application additional processing via generic
procedures, which are instantiated by the application. These additional processing queries

Xiv



© ISO/IEC ISO/IEC 15291:1999(E)

decompose as ASIS elements from the logical Ada semantic tree. Queries are provided in the

child packages: Clauses, Declarations, Definitions, Expressions, and Statements.

« child package Asis.Clauses - Defines queries dealing with context clauses and representation
clauses.

» child package Asis.Declarations - Defines queries dealing with Ada declarations.

« child package Asis.Definitions - Defines queries dealing with the definition portion of Ada
object, type, and subtype declarations.

« child package Asis.Expressions - Defines all queries dealing with Ada expressions.
» child package Asis.Statements - Defines queries dealing with Ada statements.

The child package Asis.Text encapsulates a set of operations to access the text of ASIS
elements. It defines the operations for obtaining compilation text spans, lines, and images of
elements.

The child package Asis.lds provides a mechanism to efficiently reference ASIS elements in a
persistent manner.

To support portability amongst a variety of implementors’ compilation environments, certain types
and constants have been identified as implementation-defined.

The child package Asis.Errors defines the kinds of errors. The exceptions that can be raised
across the ASIS interface are defined in the child package Asis.Exceptions.

The interface supports one optional child package and its single child package:

» child package Asis.Data_Decomposition - The interface also includes an optional capability to
decompose data values using the ASIS type information and portable data stream,
representing a data value of that type.

XV
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Information technology —
Programming languages —
Ada Semantic Interface Specification (ASIS)

1 General

1.1 Scope

The Ada Semantic Interface Specification (ASIS) is an interface between an Ada environment (as
defined by ISO/IEC 8652:1995) and any tool requiring information from this environment. An Ada
environment includes valuable semantic and syntactic information. ASIS is an open and published
callable interface which gives CASE tool and application developers access to this information.
ASIS has been designed to be independent of underlying Ada environment implementations, thus
supporting portability of software engineering tools while relieving tool developers from needing to
understand the complexities of an Ada environment’s proprietary internal representation.

Examples of tools that benefit from the ASIS interface include: automated code monitors,
browsers, call tree tools, code reformators, coding standards compliance tools, correctness
verifiers, debuggers, dependency tree analysis tools, design tools, document generators, metrics
tools, quality assessment tools, reverse engineering tools, re-engineering tools, safety and security
tools, style checkers, test tools, timing estimators, and translators.

This International Standard specifies the form and meaning of the ASIS interface to the Ada
compilation environment.

This International Standard is applicable to tools and applications needing syntactic and semantic
information in the Ada compilation environment.

111 Extent

This International Standard specifies:
e The form of the ASIS interface;

e Sequencing of ASIS calls;

e The permissible variations within this International Standard, and the manner in which they are
to be documented;

e Those violations of this International Standard that a conforming implementation is required to
detect, and the effect of attempting to execute a program containing such violations;

This International Standard does not specify:
e Semantics of the interface in the face of simultaneous updates to the Ada compilation
environment.

* Semantics of the interface for more than one thread of control.
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1.1.2 Structure
This International Standard contains twenty-three clauses and four annexes.

Clause 1 is general in nature providing the scope of this International Standard, normative
references, and definitions.

Clause 2 identifies the ASIS technical concepts. Here the Ada compilation environment to which
ASIS interfaces is described. The concept of queries is presented. The ASIS package architecture
is presented.

The packages that comprise the ASIS International Standard are provided in Clauses 3 through
23. These packages are provided in the correct compilation order and when presented in
electronic format are compilable.

e Clause 3 package Asis

 Clause4 package Asis.Errors

e Clause5 package Asis.Exceptions

e Clause 6 package Asis.Implementation

e Clause 7 package Asis.Implementation.Permissions

e« Clause 8 package Asis.Ada_Environments

e Clause 9 package Asis.Ada_Environments.Containers
e Clause 10 package Asis.Compilation_Units

¢« Clause 11 package Asis.Compilation_Units.Times

e Clause 12 package Asis.Compilation_Units.Relations

e Clause 13 package Asis.Elements

e Clause 14 package Asis.lterator

¢« Clause 15 package Asis.Declarations

* Clause 16 package Asis.Definitions

 Clause 17 package Asis.Expressions

e Clause 18 package Asis.Statements

¢« Clause 19 package Asis.Clauses

e Clause 20 package Asis.Text

e« Clause 21 package Asis.lds

« Clause 22 package Asis.Data_Decomposition (optional package)
¢ Clause 23 package Asis.Data_Decomposition.Portable_Transfer

The following annexes are informative:

Annex A: Glossary

Annex B: ASIS Application Examples

Annex C: Miscellaneous ASIS I/O and IDL Approaches
Annex D: Rationale

The major package interfaces visible to ASIS users are identified as clauses facilitating access
from the table of contents.



© ISO/IEC ISO/IEC 15291:1999(E)

The ASIS interface is compilable. Consequently, Sentinels have been used to mark portions of the
ASIS text with comments appropriate to an ASIS implementor and an ASIS user.

The sentinels and their meanings are:

--|ER (Element Reference) These comments mark an element kind reference which acts as a
header for those queries that work on this element kind.

--|CR (Child Reference) These sentinel comments follow sentinel comments marking element
references (--ER) and reference child element queries that decompose the element into
its children.

--]AN (Application Note) These comments describe suggested uses, further analysis, or other
notes of interest to ASIS applications.

--|IP (Implementation Permissions) These comments describe permissions given an
implementor when implementing the associated type or query.

-|IR  (Implementation Requirements) These comments describe additional requirements for
conforming implementations.

1.1.3 Conformit y with this International Standard

1131 Implementation conformance requirements

An ASIS implementation includes all the hardware and software that implements the ASIS
specification for a given Ada implementation and that provides the functionality required by the
ASIS specification. An ASIS implementor is a company, institution, or other group (such as a
vendor) who develops an ASIS implementation. A conforming ASIS implementation shall meet all
of the following criteria:

a) The system shall support all required interfaces defined within this International Standard.
These interfaces shall support the functional behavior described herein. All interfaces in the
ASIS specification are required unless the interface is specifically identified as being optional.
The ASIS specification defines one optional package: Asis.Data_Decomposition.
Asis.Data_Decomposition has one child package,
Asis.Data_Decomposition.Portable_Transfer.

b) The system may provide additional facilities not required by this International Standard.
Extensions are non-standard facilities (e.g., other library units, non-standard children of
standard ASIS library units, subprograms, etc.) which provide additional information from ASIS
types, or modify the behavior of otherwise standard ASIS facilities to provide alternative or
additional functionality. Nonstandard extensions shall be identified as such in the system
documentation. Nonstandard extensions, when used by an application, may change the
behavior of functions or facilities defined by this International Standard. The conformance
document shall define an environment in which an application can be run with the behavior
specified by this International Standard. In no case except package name conflicts shall such
an environment require modification of a Basic Conforming or Fully Conforming ASIS
Application. An implementation shall not change package specifications in this International
Standard except by:

« Adding “with” clauses, pragmas, representation specifications, comments, and
allowable pragmas. Allowable pragmas are those which do not change the semantics
of the interface (e.g., List, Optimize, Page).

« Replacing instances of the words <implementation-defined> with appropriate value(s).

e Adding or changing private parts.

« Making any other changes that are lexically transparent to Ada compilers.
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¢) An ASIS implementation shall not raise Program_Error on elaboration of an ASIS package, or
on execution of an ASIS subprogram, due to elaboration order dependencies in the ASIS
implementation.

d) Except as explicitly provided for in this International Standard, Standard.Storage_Error is the
only exception that should be raised by operations declared in this International Standard.

e) When executed, an implementation of this International Standard shall not be erroneous, as
defined by ISO/IEC 8652:1995.

1.1.3.2 Implementation conformance documentation

A conformance document shall be available for an implementation claiming conformance to this
International Standard. The conformance document shall have the same structure as this
International Standard, with the information presented in the equivalently numbered clauses, and
subclauses. The conformance document shall not contain information about extended facilities or
capabilities outside the scope of this International Standard.

The conformance document shall contain a statement that indicates the full name, number, and
date of the International Standard that applies. The conformance document may also list software
standards approved by ISO/IEC or any ISO/IEC member body that are available for use by a Basic
or Fully Conforming ASIS Application. Applicable characteristics whose documentation is required
by one of these standards, or by standards of government bodies, may also be included.

The conformance document shall describe the behavior of the implementation for all
implementation-defined features defined in this International Standard. This requirement shall be
met by listing these features and providing either a specific reference to the system documentation
or providing full syntax and semantics of these features. The conformance document shall specify
the behavior of the implementation for those features where this International Standard states that
implementations may vary.

No specifications other than those described in this subclause shall be present in the conformance
document.

The phrase “shall be documented” in this International Standard means that documentation of the
feature shall appear in the conformance document, as described previously, unless the system
documentation is explicitly mentioned.

The system documentation should also contain the information found in the conformance
document.

1.1.33 Implementation conformance categories

An implementation is required to define all of the subprograms for all of the operations defined in
this International Standard, including those whose implementation is optional. Required
functionality is the subset of ASIS facilities which are not explicitly identified in the ASIS standard
as optional. Optional functionality is the subset of ASIS facilities which are explicitly identified in the
ASIS standard as optional which may legitimately be omitted from a Basic Conforming ASIS
implementation. Optional interfaces shall be included in any Fully Conforming ASIS
implementation, unless stated otherwise in the ASIS specification. An application that accesses an
Ada environment’s semantic tree (e.g., Diana Tree) directly using work-arounds is not considered
to be a conformant application. All Conforming Applications fall within one of the categories
defined below.

If an unimplemented feature is used, the exception Asis.ASIS_Failed shall be raised and
Asis.Implementation_Status shall return the value for Error_Kinds of Not_Implemented_Error.

There are four categories of conforming ASIS implementations:
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1.1.3.3.1 Basic conforming ASIS implementation
A Basic Conforming ASIS Implementation is an ASIS implementation supporting all required
interfaces defined within this International Standard.

1.1.3.3.2 Fully conforming ASIS implementation
A Fully Conforming ASIS Implementation is an ASIS implementation supporting all required and all
optional interfaces defined within this International Standard.

1.1.3.3.3 Basic conforming ASIS implementation using extensions

A Basic Conforming ASIS Implementation Using Extensions is an ASIS implementation that differs
from a Basic Conforming ASIS Implementation only in that it uses nonstandard extensions that are
consistent with this International Standard. Such an implementation shall fully document its
extended facilities, in addition to the documentation required for a Basic Conforming ASIS
Implementation.

1.1.3.3.4 Fully conforming ASIS implementation using extensions

A Fully Conforming ASIS Implementation Using Extensions is an ASIS implementation that differs
from a Fully Conforming ASIS Implementation only in that it uses nonstandard extensions that are
consistent with this International Standard. Such an implementation shall fully document its
extended facilities, in addition to the documentation required for a Fully Conforming ASIS
Implementation.

1.1.34 Application conformance categories

An ASIS application is any programming system or any set of software components making use of
ASIS queries to obtain information about any set of Ada components. All ASIS applications
claiming conformance to this International Standard shall use a Conforming ASIS Implementation
with or without extensions.

1.1.3.4.1 Basic conforming ASIS application
A Basic Conforming ASIS Application is an application that only uses the required facilities defined
within this International Standard. It shall be portable to any Conforming ASIS Implementation.

1.1.3.4.2 Fully conforming ASIS application

A Fully Conforming ASIS Application is an application that only uses the required facilities and the
optional facilities defined within this International Standard. It shall be portable to any Fully
Conforming ASIS Implementation.

1.1.3.4.3 Basic conforming ASIS application using extensions

A Basic Conforming ASIS Application Using Extensions is an application that differs from a Basic
Conforming ASIS Application only in that it uses nonstandard, implementation provided, extended
facilities that are consistent with this International Standard. Such an application should fully
document its requirements for these extended facilities. A Basic Conforming ASIS Application
Using Extensions may or may not be portable to other Basic or Fully Conforming ASIS
Implementation Using Extensions.

1.1.3.4.4 Fully conforming ASIS application using extensions

A Fully Conforming ASIS Application Using Extensions is an application that differs from a Fully
Conforming ASIS Application only in that it uses nonstandard, implementation provided, extended
facilities that are consistent with this International Standard. Such an application should fully
document its requirements for these extended facilities. A Fully Conforming ASIS Application
Using Extensions may or may not be portable to other Fully Conforming ASIS Implementation
Using Extensions.
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114 Implementation permissions

The ASIS Application Program Interface (API) may be implemented through a variety of
approaches. Approaches permitted by this International Standard are based on the traditional
approach and the client /server approach. These implementation permissions are depicted in
Figure 1 and described below:

1.14.1 Traditional approach (permission 1)

Traditionally, the ASIS APl implementation is intended to execute on the node containing the
implementor’s Ada software engineering environment and the desired Ada compilation
environment. Because the ASIS API interfaces directly, ASIS performs at its best. It is expected
that most ASIS implementors will support this approach as it requires little additional effort when
alternative approaches are supported. In Figure 1, the client tool using Permission 1 uses the
ASIS specification exactly as specified in this International Standard. ASIS tools and applications
are compiled in the implementor's environment.

1.1.4.2 Client / server approach (permission 2)

As an alternative, a client / server approach can be used to implement the ASIS API. Here the
ASIS API is supported by a server; ASIS client tools can request ASIS services within the
supported network.

Figure 1 identifies four ASIS client tools using permission 2 capable of interfacing with an ASIS
Object Request Broker (ORB) server. One client tool is written in Ada, one in Java, one in C++,
and one in Smalltalk. The ORB serves as a broker between the client and server on a network
consisting of many nodes. Server location and services are registered with the ORB. A client
needing the services interfaces with the ORB, who brokers the needed server interface
information. The interface between a client and server is written as an interface specification in the
Interface Definition Language (IDL). IDL is very different from most computer languages; when
IDL is compiled, the interface specification is produced in either Ada, Java, C++, or Smalltalk. In
addition, the necessary artifacts are produced to register the client or server interface with the
ORB.

1.1.4.3 Distributed traditional approach (permission 3)

The Ada specification created by the compilation of this ASIS APl in IDL is semantically equivalent
to this ASIS standard, but not syntactically identical. An ASIS Client tool written in Ada interfaces
to the ASIS API as specified in this International Standard. As shown in Figure 1, the ASIS API
encapsulates the ASIS ORB client as generated from the compilation of the ASIS IDL into Ada.
Client tools using either permission 1 or permission 3 are, most likely, identical. Client tools
developed using permission 3 can be developed as plug and play.

1.1.4.4 ASIS dynamic client approach (permission 4)

In addition to using traditional compiled tools through the client / server interface, ORBs can
provide a Dynamic Interface Invocation (DIl) capability where rather general purpose tools can
access the interface dynamically. Shown in Figure 1, such a tool behaves more like a browser. It
accesses the ASIS IDL as registered with the server and browses through the services provided
by the ASIS interface. Use of this capability with ASIS is extremely cumbersome and manually
intensive. However, this provides a user access to information across the interface that had not
been preprogrammed by a tool.
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Figure 1 — ASIS implementation permissions
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1.15 Classification of errors

ASIS reports all operational errors by raising an exception. Whenever an ASIS implementation
raises one of the exceptions declared in package Asis.Exceptions, it will previously have set the
values returned by the Status and Diagnosis queries to indicate the cause of the error. The
possible values for Status are indicated here along with suggestions for the associated contents of
the Diagnosis string.

ASIS applications are encouraged to follow this same convention whenever they explicitly raise
any ASIS exception to always record a Status and Diagnosis prior to raising the exception. Values
of errors along with their general meanings are:

Not_An_Error -- No error is presently recorded
Value_Error -- Routine argument value invalid
Initialization_Error -- ASIS is uninitialized
Environment_Error -- ASIS could not initialize
Parameter_Error -- Bad Parameter given to Initialize
Capacity_Error -- Implementation overloaded
Name_Error -- Context/unit not found

Use Error -- Context/unit not use/open-able
Data_Error -- Context/unit bad/invalid/corrupt
Text_Error -- The program text cannot be located
Storage_Error -- Storage_Error suppressed
Obsolete_Reference_Error -- Semantic reference is obsolete
Unhandled_Exception_Error -- Unexpected exception suppressed
Not_Implemented_Error -- Functionality not implemented
Internal_Error -- Implementation internal failure

Diagnostic messages may be more specific.
A set of exceptions shall be raised for the following circumstances:

* ASIS_Inappropriate_Context - Raised when ASIS is passed a Context value that is not
appropriate for the operation. This exception typically indicates that a user error has occurred
within the application.

e ASIS_Inappropriate_Compilation_Unit - Raised when ASIS is passed a Compilation_Unit
value that is not appropriate. This exception typically indicates that a user error has occurred
within the application.

* ASIS_Inappropriate_Element - Raised when ASIS is given an Element value that is not
appropriate. This exception typically indicates that a user error has occurred within the
application.

e ASIS_Inappropriate_Line - Raised when ASIS is given a Line value that is not appropriate.

e ASIS_Inappropriate_Line_Number - Raised when ASIS is given a Line_Number value that
is not appropriate. This exception typically indicates that a user error has occurred within the
application.

* ASIS_Failed - All ASIS routines may raise ASIS_Failed whenever they cannot normally
complete their operation. This exception typically indicates a failure of the underlying ASIS
implementation. This is a catch-all exception that is raised for different reasons in different
ASIS implementations.
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1.2 Normative reference

The following standard contains provisions which, through reference in this text, constitute
provisions of this International Standard. At the time of publication, the edition indicated was valid.
All standards are subject to revision, and parties to agreements based on this standard are
encouraged to investigate the possibility of applying the most recent edition of the International
Standard indicated below. Members of IEC and ISO maintain registers of currently valid
International Standards.

ISO/IEC 8652:1995, Information technology — Programming languages — Ada.





