

INTERNATIONAL
STANDARD

ISO/IEC
18033-2

First edition
2006-05-01

**Information technology — Security
techniques — Encryption algorithms —**

**Part 2:
Asymmetric ciphers**

*Technologies de l'information — Techniques de sécurité — Algorithmes
de chiffrement —*

Partie 2: Chiffres asymétriques

Reference number
ISO/IEC 18033-2:2006(E)

© ISO/IEC 2006

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

© ISO/IEC 2006

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

Contents

	Page
1 Scope	1
2 Normative references	1
3 Definitions	2
4 Symbols and notation	7
5 Mathematical conventions	8
5.1 Functions and algorithms	8
5.2 Bit strings and octet strings	9
5.3 Finite Fields	10
5.4 Elliptic curves	12
6 Cryptographic transformations	14
6.1 Cryptographic hash functions	14
6.2 Key derivation functions	15
6.3 MAC algorithms	16
6.4 Block ciphers	16
6.5 Symmetric ciphers	17
7 Asymmetric ciphers	19
7.1 Plaintext length	20
7.2 The use of labels	21
7.3 Ciphertext format	21
7.4 Encryption options	21
7.5 Method of operation of an asymmetric cipher	22
7.6 Allowable asymmetric ciphers	22
8 Generic hybrid ciphers	22
8.1 Key encapsulation mechanisms	23
8.2 Data encapsulation mechanisms	24
8.3 <i>HC</i>	25
9 Constructions of data encapsulation mechanisms	26
9.1 <i>DEM1</i>	26
9.2 <i>DEM2</i>	27
9.3 <i>DEM3</i>	28
10 ElGamal-based key encapsulation mechanisms	30
10.1 Concrete groups	30
10.2 <i>ECIES-KEM</i>	32
10.3 <i>PSEC-KEM</i>	34
10.4 <i>ACE-KEM</i>	36
11 RSA-based asymmetric ciphers and key encapsulation mechanisms	39
11.1 RSA key generation algorithms	39
11.2 RSA Transform	40
11.3 RSA encoding mechanisms	40
11.4 <i>RSAES</i>	42
11.5 <i>RSA-KEM</i>	44
12 Ciphers based on modular squaring	45

12.1	HIME key generation algorithms	45
12.2	HIME encoding mechanisms	46
12.3	<i>HIME(R)</i>	48
Annex A (normative) ASN.1 syntax for object identifiers		51
Annex B (informative) Security considerations		61
B.1	MAC algorithms	61
B.2	Block ciphers	62
B.3	Symmetric ciphers	62
B.4	Asymmetric ciphers	63
B.5	Key encapsulation mechanisms	65
B.6	Data encapsulation mechanisms	66
B.7	Security of <i>HC</i>	68
B.8	Intractability assumptions related to concrete groups	68
B.9	Security of <i>ECIES-KEM</i>	69
B.10	Security of <i>PSEC-KEM</i>	71
B.11	Security of <i>ACE-KEM</i>	71
B.12	The RSA inversion problem	72
B.13	Security of <i>RSAES</i>	73
B.14	Security of <i>RSA-KEM</i>	73
B.15	Security of <i>HIME(R)</i>	74
Annex C (informative) Test vectors		75
C.1	Test vectors for <i>DEM1</i>	75
C.2	Test vectors for <i>ECIES-KEM</i>	76
C.3	Test vectors for <i>PSEC-KEM</i>	83
C.4	Test vectors for <i>ACE-KEM</i>	91
C.5	Test vectors for <i>RSAES</i>	100
C.6	Test vectors for <i>RSA-KEM</i>	105
C.7	Test vectors for <i>HC</i>	109
C.8	Test vectors for <i>HIME(R)</i>	112
Bibliography		123

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC participate in the development of International Standards through technical committees established by the respective organization to deal with particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of the joint technical committee is to prepare International Standards. Draft International Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as an International Standard requires approval by at least 75 % of the national bodies casting a vote.

ISO/IEC 18033-2 was prepared by Joint Technical Committee ISO/IEC JTC 1, *Information technology*, Subcommittee SC 27, *IT Security techniques*.

ISO/IEC 18033 consists of the following parts, under the general title *Information technology — Security techniques — Encryption algorithms*:

- *Part 1: General*
- *Part 2: Asymmetric ciphers*
- *Part 3: Block ciphers*
- *Part 4: Stream ciphers*

Introduction

The International Organization for Standardization (ISO) and International Electrotechnical Commission (IEC) draw attention to the fact that it is claimed that compliance with this International Standard may involve the use of patents.

The ISO and IEC take no position concerning the evidence, validity and scope of this patent right. The holder of this patent right has assured the ISO and IEC that he is willing to negotiate licences under reasonable and non-discriminatory terms and conditions with applicants throughout the world. In this respect, the statement of the holder of this patent right is registered with the ISO and IEC. Information may be obtained from:

ISO/IEC JTC 1/SC 27 Standing Document 8 (SD8) "Patent Information"

Standing Document 8 (SD8) is publicly available at: <http://www.ni.din.de/sc27>

Attention is drawn to the possibility that some of the elements of this International Standard may be the subject of patent rights other than those identified above. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

Information technology — Security techniques — Encryption algorithms —

Part 2: Asymmetric ciphers

1 Scope

This part of ISO/IEC 18033 specifies several asymmetric ciphers. These specifications prescribe the functional interfaces and correct methods of use of such ciphers in general, as well as the precise functionality and cipher text format for several specific asymmetric ciphers (although conforming systems may choose to use alternative formats for storing and transmitting cipher-texts).

A normative annex (Annex A) gives ASN.1 syntax for object identifiers, public keys, and parameter structures to be associated with the algorithms specified in this part of ISO/IEC 18033.

However, these specifications do not prescribe protocols for reliably obtaining a public key, for proof of possession of a private key, or for validation of either public or private keys; see ISO/IEC 11770-3 for guidance on such key management issues.

The asymmetric ciphers that are specified in this part of ISO/IEC 18033 are indicated in Clause 7.6.

NOTE Briefly, the asymmetric ciphers are:

- ECIES-HC; PSEC-HC; ACE-HC: generic hybrid ciphers based on ElGamal encryption;
- RSA-HC: a generic hybrid cipher based on the RSA transform;
- RSAES: the OAEP padding scheme applied to the RSA transform;
- HIME(R): a scheme based on the hardness of factoring.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO/IEC 9797-1:1999, *Information technology — Security techniques — Message Authentication Codes (MACs) — Part 1: Mechanisms using a block cipher*

ISO/IEC 9797-2:2002, *Information technology — Security techniques — Message Authentication Codes (MACs) — Part 2: Mechanisms using a dedicated hash-function*

ISO/IEC 10118-2:2000, *Information technology — Security techniques — Hash-functions — Part 2: Hash-functions using an n-bit block cipher*

ISO/IEC 10118-3:2004, *Information technology — Security techniques — Hash-functions — Part 3: Dedicated hash-functions*

ISO/IEC 18033-3:2005, *Information technology — Security techniques — Encryption algorithms — Part 3: Block ciphers*