

ISO/IEC 29341-16-1

Edition 1.0 2011-08

INTERNATIONAL STANDARD

**Information technology – UPnP device architecture –
Part 16-1: Low Power Device Control Protocol – Low Power Architecture**

INTERNATIONAL
ELECTROTECHNICAL
COMMISSION

PRICE CODE

Q

ICS 35.200

ISBN 978-2-88912-645-3

CONTENTS

Glossary	3
1 Introduction	4
2 UPnP Low Power Feature Overview	4
2.1 The Need for UPnP Low Power	4
2.2 System Power States	4
2.3 UPnP Low Power Network Elements	5
2.4 Overarching Use Cases	6
2.4.1 UPnP Low Power Solution - Without Proxy	6
2.4.2 UPnP Low Power Solution – With Basic Power Management Proxy	7
2.5 Low Level Use Cases	8
2.5.1 Use Case 1 – Device Waking PC without Use of Proxy	9
2.5.2 Use Case 2 – Node Going to Sleep	10
2.5.3 Use Case 3 – Device Entering System	11
2.5.4 Use case 4 – Device leaving system	12
2.5.5 Use Case 5 – Node Changing IP Address	13
2.5.6 Use Case 6 – Device Waking PC – Using proxy	14
3 Theory of Operation	15
3.1 Impact on UPnP Device Architecture 1.0 and 1.1	15
3.2 UPnP Low Power Requirements	15
3.2.1 Low Power Requirements and Compatibility with Legacy Control Points	16
3.2.2 Low Power Requirements Supported By Low Power Aware Control Point	16
3.2.3 UPnP Low Power states	17
3.2.4 New SSDP headers	21
3.2.5 Bearer Dependent Wake Up Mechanism	22
3.2.6 UPnP Low Power Devices	22
3.2.7 UPnP Power Management Proxy	24
3.2.8 UPnP Low Power Aware Control Point	26
3.3 Architecture Sequence Diagrams	26
3.3.1 Scenarios Without proxy	26
3.3.2 Scenarios with Basic Power Management Proxy	33
4 UPnP Low Power Service Protocol	36
5 UPnP Low Power Proxy Service Protocol	36
6 Use of UPnP Low Power Feature by Applications	36
6.1 Digital Media Adapter / Player	36
6.2 Mobile / Handheld	36
7 References	37
Figure 1 — UPnP Low Power solution without Proxy	6
Figure 2 — UPnP Low Power Solution with Basic Proxy	7
Figure 3 — Device waking PC without use of proxy	9
Figure 4 — Node going to sleep	10
Figure 5 — Device Entering System	11

Figure 6 — Device Leaving System	12
Figure 7 — Node Changing IP Address	13
Figure 8 — Device waking PC – using Proxy	14
Figure 9 — UPnP Low Power states.....	19
Figure 10 — Basic functionality between autonomous wake up low power device in <i>Transparent Sleep</i> and <i>Deep Sleep Online</i> , Legacy and Low Power Aware Control Points without Proxy.	27
Figure 11 — Basic functionality between controlled wake up sleep device in <i>Transparent Sleep</i> and <i>Deep Sleep Offline</i> , Legacy and Low Power Aware Control points without Proxy.....	28
Figure 12 — Wake up functionality between autonomous wake up device and Low Power Aware Control points without Proxy	29
Figure 13 — Basic functionality between controlled wake up device in <i>Transparent Sleep</i> and <i>Deep Sleep Offline</i> , Legacy and Low Power Aware Control Points without Proxy.....	31
Figure 14 — Interaction of a Low Power UPnP device with a Basic Power Management Proxy, a Low Power Aware Control Point and a Legacy Control Point	33
Figure 15 — Low Power Aware Control Point waking up a device from <i>Deep Sleep Offline</i> State	35
Table 1 — Low Power requirements supported by Legacy Control Point and Low Power Aware Control Point.....	15
Table 2 — UPnP Low Power States	18
Table 3 — State Machine Transition Description.....	21
Table 4 — SSDP UPnP Low Power Extension Headers	22
Table 5 — UPnP Low Power Device Requirements.....	23
Table 6 — UPnP Basic Power Management Proxy Requirements.....	24

INFORMATION TECHNOLOGY – UPNP DEVICE ARCHITECTURE –

Part 16-1: Low Power Device Control Protocol – Low Power Architecture

FOREWORD

- 1) ISO (International Organization for Standardization) and IEC (International Electrotechnical Commission) form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC participate in the development of International Standards. Their preparation is entrusted to technical committees; any ISO and IEC member body interested in the subject dealt with may participate in this preparatory work. International governmental and non-governmental organizations liaising with ISO and IEC also participate in this preparation.
- 2) In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1. Draft International Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as an International Standard requires approval by at least 75 % of the national bodies casting a vote.
- 3) The formal decisions or agreements of IEC and ISO on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC and ISO member bodies.
- 4) IEC, ISO and ISO/IEC publications have the form of recommendations for international use and are accepted by IEC and ISO member bodies in that sense. While all reasonable efforts are made to ensure that the technical content of IEC, ISO and ISO/IEC publications is accurate, IEC or ISO cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 5) In order to promote international uniformity, IEC and ISO member bodies undertake to apply IEC, ISO and ISO/IEC publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any ISO/IEC publication and the corresponding national or regional publication should be clearly indicated in the latter.
- 6) ISO and IEC provide no marking procedure to indicate their approval and cannot be rendered responsible for any equipment declared to be in conformity with an ISO/IEC publication.
- 7) All users should ensure that they have the latest edition of this publication.
- 8) No liability shall attach to IEC or ISO or its directors, employees, servants or agents including individual experts and members of their technical committees and IEC or ISO member bodies for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication of, use of, or reliance upon, this ISO/IEC publication or any other IEC, ISO or ISO/IEC publications.
- 9) Attention is drawn to the normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 10) Attention is drawn to the possibility that some of the elements of this International Standard may be the subject of patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

International Standard ISO/IEC 29341-16-1 was prepared by UPnP Forum Steering committee¹, was adopted, under the fast track procedure, by subcommittee 25: Interconnection of information technology equipment, of ISO/IEC joint technical committee 1: Information technology.

The list of all currently available parts of the ISO/IEC 29341 series, under the general title *Information technology – UPnP device architecture*, can be found on the IEC web site.

This International Standard has been approved by vote of the member bodies, and the voting results may be obtained from the address given on the second title page.

¹ UPnP Forum Steering committee, UPnP Forum, 3855 SW 153rd Drive, Beaverton, Oregon 97006 USA. See also "Introduction".

IMPORTANT – The “colour inside” logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this publication using a colour printer.

Glossary

ACPI

Advanced Configuration and Power Interface

AP

Access Point: Any entity that has station functionality and provides access to the distribution services (Ethernet network), via the wireless medium for associated stations

AV

Audio / Video

BOOTID

BOOTID is a part of the SSDP:Alive header defined in UPnP Device Architecture 1.1 and is defined as a number that is increased each time device sends an initial announcement

BPMXP

Basic Power Management Proxy

BTH

Bluetooth

CP

Control Point

DHCP

Dynamic Host Configuration Protocol

DMA

Digital Media Adapter

DMP

Digital Media Player

IP

Internet Protocol

LPACP

Low Power Aware Control Point

NIC

Network Interface Card

OSPM

Operating System-directed Power Management

PAN

Personal Area Network

PC

Personal Computer

PM

Power Management

PM Service

UPnP Based Power Management Service

SSDP

Simple Service Discovery Protocol

Standby period

Time interval SoftAP monitors traffic for no activity before going to standby mode.

UDN

Unique Device Number

UI

User Interface

UUID

Universally Unique Identifier

UPnP

Universal Plug and Play

WoLAN

Wake On LAN

WoWLAN

Wake on Wireless LAN

1 Introduction

The UPnP Low Power architecture allows devices implementing power saving modes to conserve energy. The purpose of this document is to define an architecture that will address the issue of reporting and tracking power states of nodes in a network. The UPnP Low Power solution is designed to enable nodes in the network to report and track the Low Power states of other nodes in the network. Additionally, for nodes that support wake up capabilities, this architecture addresses methods to wake up those nodes when required. The objective of the UPnP Low Power solution is to allow UPnP devices to conserve energy and still be discoverable by UPnP Control Points. The UPnP Control Point will be aware of the UPnP devices and services implemented on a Low Power device even when the Low Power device is in a power savings mode.

This architecture document defines two UPnP services that comprise the UPnP Low Power framework:

- Low Power device service
- Basic Power Management Proxy service

The Low Power device service allows UPnP devices to transition to low power states and still be part of the UPnP network. The Basic Power Management Proxy service can optionally represent the sleeping UPnP devices in the network and is capable of certain limited functions to support the discovery of Low Power devices that are in a power saving mode. The introduction of Low Power into the UPnP architecture will help align UPnP with emerging energy regulation requirements.