

JPCA

IPC/JPCA-2315

**Design Guide for High
Density Interconnects (HDI)
and Microvias**

IPC/JPCA-2315

June 2000

A standard developed by IPC and JPCA

2215 Sanders Road, Northbrook, IL 60062-6135
Tel. 847.509.9700 Fax 847.509.9798
www.ipc.org

The Principles of Standardization

In May 1995 the IPC's Technical Activities Executive Committee adopted Principles of Standardization as a guiding principle of IPC's standardization efforts.

Standards Should:

- Show relationship to Design for Manufacturability (DFM) and Design for the Environment (DFE)
- Minimize time to market
- Contain simple (simplified) language
- Just include spec information
- Focus on end product performance
- Include a feedback system on use and problems for future improvement

Standards Should Not:

- Inhibit innovation
- Increase time-to-market
- Keep people out
- Increase cycle time
- Tell you how to make something
- Contain anything that cannot be defended with data

Notice

IPC Standards and Publications are designed to serve the public interest through eliminating misunderstandings between manufacturers and purchasers, facilitating interchangeability and improvement of products, and assisting the purchaser in selecting and obtaining with minimum delay the proper product for his particular need. Existence of such Standards and Publications shall not in any respect preclude any member or nonmember of IPC from manufacturing or selling products not conforming to such Standards and Publication, nor shall the existence of such Standards and Publications preclude their voluntary use by those other than IPC members, whether the standard is to be used either domestically or internationally.

Recommended Standards and Publications are adopted by IPC without regard to whether their adoption may involve patents on articles, materials, or processes. By such action, IPC does not assume any liability to any patent owner, nor do they assume any obligation whatever to parties adopting the Recommended Standard or Publication. Users are also wholly responsible for protecting themselves against all claims of liabilities for patent infringement.

IPC Position Statement on Specification Revision Change

It is the position of IPC's Technical Activities Executive Committee (TAEC) that the use and implementation of IPC publications is voluntary and is part of a relationship entered into by customer and supplier. When an IPC standard/guideline is updated and a new revision is published, it is the opinion of the TAEC that the use of the new revision as part of an existing relationship is not automatic unless required by the contract. The TAEC recommends the use of the latest revision.

Adopted October 6, 1998

Why is there a charge for this standard?

Your purchase of this document contributes to the ongoing development of new and updated industry standards. Standards allow manufacturers, customers, and suppliers to understand one another better. Standards allow manufacturers greater efficiencies when they can set up their processes to meet industry standards, allowing them to offer their customers lower costs.

IPC spends hundreds of thousands of dollars annually to support IPC's volunteers in the standards development process. There are many rounds of drafts sent out for review and the committees spend hundreds of hours in review and development. IPC's staff attends and participates in committee activities, typesets and circulates document drafts, and follows all necessary procedures to qualify for ANSI approval.

IPC's membership dues have been kept low in order to allow as many companies as possible to participate. Therefore, the standards revenue is necessary to complement dues revenue. The price schedule offers a 50% discount to IPC members. If your company buys IPC standards, why not take advantage of this and the many other benefits of IPC membership as well? For more information on membership in IPC, please visit www.ipc.org or call 847/790-5372.

Thank you for your continued support.

JPCA

IPC/JPCA-2315

Design Guide for High Density Interconnects (HDI) and Microvias

Developed by the High Density Interconnect (HDI) Design Subcommittee (D-41) of the High Density Interconnect (HDI) Committee (D-40) of IPC and the Build-Up PWB Committee of the Japan Printed Circuit Association (JPCA)

IPC Standards and Artificial Intelligence (AI) Statement – 2025

IPC explicitly prohibits:

- The integration or transfer of any data whether in the form of IPC books, standards, metadata, or other formats — into AI engines or algorithms by any person or entity, including authorized distributors and their end users.
- Activities involving data harvesting, text and data mining, enrichment, or the creation of derivative works based on this data, including the use of automated data collection methods or artificial intelligence.

Any breach of these provisions is considered a copyright infringement unless expressly and formally authorized by IPC.

Users of this standard are encouraged to participate in the development of future revisions.

Contact:

IPC
2215 Sanders Road
Northbrook, Illinois
60062-6135
Tel 847 509.9700
Fax 847 509.9798

Acknowledgment

Any Standard involving a complex technology draws material from a vast number of sources. While the principal members of the High Density Interconnect (HDI) Design Subcommittee (D-41) of the High Density Interconnect (HDI) Committee (D-40) and the JPCA Build-Up PWB Committee are shown below, it is not possible to include all of those who assisted in the evolution of this standard. To each of them, the members of the IPC and JPCA extend their gratitude.

High Density Interconnect (HDI) Committee	High Density Interconnect (HDI) Design Subcommittee	Technical Liaisons of the IPC Board of Directors	
Chairman Bob Neves Microtek Laboratories	Chairman Lionel Fullwood WKK Distribution Ltd.	Stan Plzak Pensar Corp.	Peter Bigelow Beaver Brook Circuits Inc.
JPCA Build-Up PWB Committee	JPCA Build-Up PWB Committee		
Chairman Kanji Ohtsuka Meisei University	Secretary Setsuo Noguchi NEC Toyama, Ltd.		

High Density Interconnect (HDI) Design Subcommittee

David R Backen, Honeywell Advanced Circuits, Inc.	John Devine, Cabletron Systems, Inc.	Gerry Knoch, Atotech Deutschland Gmbh.
Steve Bakke, C.I.D., Alliant Techsystems Inc.	Joseph A. DiPalermo, Parlex Corp.	George T. Kotecki, Northrop Grumman Corp.
Scott Ballard, Lockheed Martin Space Systems,	C. Don Dupriest, Lockheed Martin	Steve Liang, Conexant Systems, Inc.
Richard W. Barry, Austria Technologie & Systemtechnik AG	John Dusl, Lockheed Martin SMS & S	Even Liu, Compeq Manufacturing Co., Ltd.
Mark A. Bosnjak, Carolina Circuits Co.	Werner Engelmaier, Engelmaier Associates, L.C.	Michael Lu, Compeq Manufacturing Co., Ltd.
Larry W. Burgess, MicroPak Laboratories, Inc.	Michael C. Fitts, The Solution Fitts	Michael G. Luke, C.I.D., Raytheon Systems Co.
Lewis Burnett, Honeywell, Inc.	Dennis Fritz, MacDermid, Inc.	Curtis A. Lustig, Shipley Ronal
Dennis J. Cantwell, Printed Circuits, Inc.	Lionel Fullwood, WKK Distribution Ltd.	James F. Maguire, Intel Corp.
Marc Carter, Chemelex Division-RBP Chemical Corp.	Rolf E. Funer, Funer Associates	Wesley R. Malewicz, Siemens Medical Systems, Inc.
Byron Case, L-3 Communications	Thomas F. Gardeski, E. I. du Pont de Nemours and Co.	John C Mather, Rockwell Collins
Ignatius Chong, Celestica International, Inc.	William J. Gebhardt, C.I.D.	Dr. Goran Matijasevic, Ormet Corp.
David A. Chopourian, Printed Circuit Corp.	Pete Gilmore, Shipley Ronal	Brian McDermott, Dynamic Details, Inc.
Christine R. Coapman, Delphi Delco Electronics Systems	Paul Grande, Jr., U.S. Navy	Hue Morris, Lockheed Martin Space Systems,
Robert Cole, Rogers Corp.	Richard T. Grannells, United Technologies	John H. Morton, C.I.D., Lockheed Martin Corp.
David J. Corbett, Defense Supply Center Columbus	Foster L. Gray, PC Interconnects	Cameron T. Murray, 3M Co.
Charles Dal Currier, Ambitech, Inc.	Michael R. Green, Lockheed Martin Space Systems	Sabine Neumann, Atotech Deutschland Gmbh.
Donna Dearinger, Honeywell Advanced Circuits, Inc.	Don Gustafson, Olec Corp.	David Nicol, Lucent Technologies, Inc.
John F. DeBrita, Sanmina Corp.	Romella Hall, Rexam Custom	Benny Nilsson, Ericsson Radio Systems AB
	Mike Hassebroek, Rockwell Collins	Steven M. Nolan, C.I.D., Silicon Graphics Computer System
	Kazuo Hirasaka, Eastern Company Ltd.	
	Happy T. Holden, Westwood Associates	
	Robert Hubbard, Medtronic Inc./Micro-Rel Division	

Deepak K. Pai, C.I.D., General Dynamics Information Systems, Inc.
Leticia Pinon-Zieren, DY 4 Systems, Inc.
Jim R. Reed, Raytheon Systems Co.

Scott Sleeper, Medtronic Inc./ Micro-Rel Division
Thomas H Stearns, Brander International Consultants
David A. Vaughan, Taiyo America, Inc.

Bill Wike, IBM Corp.
John E. Williams, Raytheon Co.
David L. Wolf, Hadco Corp.
Thomas J Zanatta, Symbol Technologies, Inc.
Sarah Zarrin, Seagate Technology

JPCA Build-Up PWB Committee

Yoshitaka Fukuoka, Toshiba Corp.
Kouji Ikawa, CMK Circuit Technology Center Corp.
Tetsuro Irino, Hitachi Chemical Co., Ltd.
Satoshi Itaya, Oki Electric Industry Co., Ltd.

Shogo Mizumoto, IBM Japan, Ltd.
Toshio Nakamura, Airex, Inc.
Yasuharu Nojima, Chiba Specialty Chemicals K.K. Yoshizumi Satoh, Toshiba Corp.
Kazuaki Shiraishi, Matsushita Electronic Components Co., Ltd.

Tadashi Takai, Motorola Japan, Ltd.
Yoshinori Takazaki, Ividen Co., Ltd.
Eiji Takehara, Taiyo Ink Mfg. Co., Ltd.

This Page Intentionally Left Blank

Table of Contents

1 SCOPE.....	1	7 CLASSIFICATION OF PRODUCTS	19
1.1 Introduction	1	7.1 Structure.....	19
1.2 General.....	1	7.1.1 HDI Type I Constructions – 1[C]0 or 1[C]1	19
1.3 HDI Design Selection Guideline	1	7.1.2 HDI Type II Constructions – 1[C]0 or 1[C]1	19
1.4 Design Figures.....	1	7.1.3 HDI Type III Constructions – $\geq 2[C] \geq 0$	20
2 APPLICABLE DOCUMENTS	1	7.1.4 HDI Type IV Constructions – $> [P]0$	20
3 TERMS AND DEFINITIONS.....	1	7.1.5 Type V Constructions (Coreless) - Using Layer Pairs.....	20
3.1.1 Capture Land.....	1	7.1.6 Type VI Constructions	21
3.1.2 Target Land.....	1	7.2 Producibility	22
3.1.3 Stacked Vias	1	7.3 General Design Rules for Other HDI Constructions	23
3.1.4 Stacked Microvia.....	1	7.3.1 Staggered Via	23
4 MICROVIAS	1	7.3.2 Via-In-Land	24
4.1 Via Formation.....	2	7.4 Alternative Construction HDI Design Rules.....	24
4.1.1 Laser Ablated Vias	2	7.4.1 Variable Depth Microvias	24
4.1.2 Wet/Dry Etched Vias.....	3	7.4.2 Staggered Microvias.....	25
4.1.3 Photodielectric Vias.....	4	7.4.3 Co-Lamination with Conductive Paste.....	25
4.1.4 Conductive Inks/Insulation Displacement	4	7.4.4 Conductive Ink Sequential Buildup.....	25
4.1.5 Process Flow for Via Formation.....	4		
5 DENSITY EVALUATION.....	6		
5.1 Routability Prediction Methods	6	Figures	
5.1.1 Substrate Wiring Capacity Analysis	6	Figure 1-1 Color Key	1
5.1.2 Wiring Capacity (W_c)	6	Figure 4-1 Cross Section of a General HDI with Microvias	2
5.2 Design Basics	6	Figure 4-2 Microvia Manufacturing Processes.....	2
5.3 Determining the Number of Conductors.....	7	Figure 4-3 Cross-Sectional Views of Methods to Make HDI with Microvias.....	3
5.4 Wiring Factor (W_f).....	7	Figure 4-4 Four Typical Constructions that Employ Lasers for Via Generation.....	3
5.4.1 Localized Escape Calculations	10	Figure 4-5 Four Typical Constructions Utilizing Etched or Mechanically Formed Vias	4
5.4.2 Wiring Between Tightly Linked Components.....	11	Figure 4-6 Four Commercially Produced PID Boards	4
5.4.3 Total Wiring Requirements	12	Figure 4-7 Four New HDI Boards that Employ Conductive Pastes as Vias.....	5
5.5 Via and Land Density	12	Figure 4-8 Summary of the Manufacturing Processes for PIDs, Laser, and Plasma Methods of Via Generation	5
5.6 Trade Off Process	12		
5.6.1 Wiring Factor Process	12	Figure 5-1 Package Size and I/O Count	6
5.6.2 Input/Output (I/O) Variables	12	Figure 5-2 Feature Pitch and Feature Size Defining Channel Width	7
5.7 Typical Examples	12	Figure 5-3 Channel Width Based on Conductors/Channel	8
5.7.1 Case I – HDI With Direct Chip Attach.....	13	Figure 5-4 One Conductor/Channel Feature Pitches	8
5.7.2 Case II – Drilled Blind Via With SMT	15	Figure 5-5 Conductors vs. Conductor Width – 2.5 mm [0.0984 in] Feature Pitch and 1.25 mm [0.04921 in] Land Width (Through-Hole Component)	8
5.7.3 CASE III – Fine Pitch SMT	17		
5.7.4 Compare Alternatives.....	18		
5.8 Trade Off Worksheets	18		
6 MATERIALS.....	19		
6.1 Designation System.....	19		
6.2 Application Level.....	19		

Figure 5-6	Conductor vs. Conductor Width – 1.25 mm [0.04921 in] Feature Pitch and 0.15 mm [0.00591 in] Land Width	9
Figure 5-7	Conductor vs. Conductor Width – 0.65 mm [0.0256 in] Feature Pitch and 0.25 mm [0.00984 in] Land Width	9
Figure 5-8	Conductor vs. Conductor Width – 0.50 mm [0.0197 in] Feature Pitch and 0.125 mm [0.004921 in] Land Width	9
Figure 5-9	Wiring Factor Model for Tightly Coupled Components.....	12
Figure 5-10	Wiring Process Flow Chart.....	13
Figure 5-11	Typical Example of HDI with Direct Chip Attach	13
Figure 5-12	Example of Drilled Blind Via With SMT	15
Figure 5-13	Example of Fine Pitch SMT.....	17
Figure 7-1	Type I HDI Construction	20
Figure 7-2	Type II HDI Construction	22
Figure 7-3	Type III HDI Construction	22
Figure 7-4	Design Example for Type III HDI with Stacked Microvias	23
Figure 7-5	Design Example for Type III HDI with Staggered Microvias	23
Figure 7-6	Type IV HDI Construction.....	24
Figure 7-7	Coreless Type V HDI Construction.....	24
Figure 7-8	Type VI Construction	24
Figure 7-9	Staggered Vias	25
Figure 7-10	Via-In-Land Design Example.....	25
Figure 7-11	Design Example for HDI Board with Variable Depth Microvias	26
Figure 7-12	Design Example for HDI Board with Staggered Microvias	26
Figure 7-13	Design Example for HDI Board Co-Laminated with Conductive Paste	27
Figure 7-14	Design Example for HDI Board Utilizing Conductive Ink Build Up	27

Tables

Table 5-1	Number of Conductors for Gridded Router When Feature Pitch is 2.5 mm [0.0983 in].....	9
Table 5-2	Number of Conductors for Gridded Router When Feature Pitch is 1.25 mm [0.04921 in]....	10
Table 5-3	Number of Conductors for Gridded Router When Feature Pitch is 0.65 mm [0.0256 in].....	10
Table 5-4	Number of Conductors for Gridded Router When Feature Pitch is 0.50 mm [0.0197 in].....	10
Table 5-5	Number of Conductors for Gridded Router When Feature Pitch is 0.25 mm [0.00984 in]....	10
Table 5-6	Pad Rows that can Escape per HDI Layer for Different Feature Sizes	11
Table 5-7	Efficiencies	13
Table 5-8	Conductors Per Channel (Two Conductors; Assumes 0.03 cm [0.012 in] Land Size).....	14
Table 5-9	Number of Conductors Per Channel (Two Conductors; Assumes 0.020 cm [0.00787 in] Land Size)	15
Table 5-10	Advanced Design Rules (Assumes 0.027 cm [0.010630 in] Land Size).....	15
Table 5-11	Advanced Technology Substrate Alternative.....	15
Table 5-12	Total Layer Counts and Alternatives	16
Table 5-13	Design Alternatives Based on Layers, Vias, and Design Rules.....	16
Table 5-14	Reporting Requirements Example HDI PWBs with Blind Vias	16
Table 5-16	Advanced Technology Alternatives	
Table 5-15	Conventional Technology Board Reporting Requirements Example	18
Table 7-1	Typical Feature Sizes for HDI Constructors.....	21
Table 7-2	Conductive Paste Co-Lamination Design Rules	25