

IPC/JPCA-4591

2012 - November

**Requirements for Printed
Electronics Functional
Conductive Materials**

A standard developed by IPC

Association Connecting Electronics Industries

JPCA

The Principles of Standardization

In May 1995 the IPC's Technical Activities Executive Committee (TAEC) adopted Principles of Standardization as a guiding principle of IPC's standardization efforts.

Standards Should:

- Show relationship to Design for Manufacturability (DFM) and Design for the Environment (DFE)
- Minimize time to market
- Contain simple (simplified) language
- Just include spec information
- Focus on end product performance
- Include a feedback system on use and problems for future improvement

Standards Should Not:

- Inhibit innovation
- Increase time-to-market
- Keep people out
- Increase cycle time
- Tell you how to make something
- Contain anything that cannot be defended with data

Notice

IPC Standards and Publications are designed to serve the public interest through eliminating misunderstandings between manufacturers and purchasers, facilitating interchangeability and improvement of products, and assisting the purchaser in selecting and obtaining with minimum delay the proper product for his particular need. Existence of such Standards and Publications shall not in any respect preclude any member or nonmember of IPC from manufacturing or selling products not conforming to such Standards and Publication, nor shall the existence of such Standards and Publications preclude their voluntary use by those other than IPC members, whether the standard is to be used either domestically or internationally.

Recommended Standards and Publications are adopted by IPC without regard to whether their adoption may involve patents on articles, materials, or processes. By such action, IPC does not assume any liability to any patent owner, nor do they assume any obligation whatever to parties adopting the Recommended Standard or Publication. Users are also wholly responsible for protecting themselves against all claims of liabilities for patent infringement.

IPC Position Statement on Specification Revision Change

It is the position of IPC's Technical Activities Executive Committee that the use and implementation of IPC publications is voluntary and is part of a relationship entered into by customer and supplier. When an IPC publication is updated and a new revision is published, it is the opinion of the TAEC that the use of the new revision as part of an existing relationship is not automatic unless required by the contract. The TAEC recommends the use of the latest revision. Adopted October 6, 1998

Why is there a charge for this publication?

Your purchase of this document contributes to the ongoing development of new and updated industry standards and publications. Standards allow manufacturers, customers, and suppliers to understand one another better. Standards allow manufacturers greater efficiencies when they can set up their processes to meet industry standards, allowing them to offer their customers lower costs.

IPC spends hundreds of thousands of dollars annually to support IPC's volunteers in the standards and publications development process. There are many rounds of drafts sent out for review and the committees spend hundreds of hours in review and development. IPC's staff attends and participates in committee activities, typesets and circulates document drafts, and follows all necessary procedures to qualify for ANSI approval.

IPC's membership dues have been kept low to allow as many companies as possible to participate. Therefore, the standards and publications revenue is necessary to complement dues revenue. The price schedule offers a 50% discount to IPC members. If your company buys IPC standards and publications, why not take advantage of this and the many other benefits of IPC membership as well? For more information on membership in IPC, please visit www.ipc.org or call 847/597-2872.

Thank you for your continued support.

JPCA

IPC/JPCA-4591

Requirements for Printed Electronics Functional Conductive Materials

Developed by the Printed Electronics Functional Materials Subcommittee (D-63) of the Printed Electronics Committee (D-60) of IPC

IPC Standards and Artificial Intelligence (AI) Statement – 2025

IPC explicitly prohibits:

- The integration or transfer of any data whether in the form of IPC books, standards, metadata, or other formats — into AI engines or algorithms by any person or entity, including authorized distributors and their end users.
- Activities involving data harvesting, text and data mining, enrichment, or the creation of derivative works based on this data, including the use of automated data collection methods or artificial intelligence.

Any breach of these provisions is considered a copyright infringement unless expressly and formally authorized by IPC.

Users of this publication are encouraged to participate in the development of future revisions.

Contact:

IPC
3000 Lakeside Drive, Suite 309S
Bannockburn, Illinois
60015-1249
Tel 847 615.7100
Fax 847 615.7105

This Page Intentionally Left Blank

Acknowledgment

Any document involving a complex technology draws material from a vast number of sources. While the principal members of the Printed Electronics Functional Materials Subcommittee (D-63) of the Printed Electronics Committee (D-60) are shown below, it is not possible to include all of those who assisted in the evolution of this standard. To each of them, the members of IPC extend their gratitude.

Printed Electronics Committee	Printed Electronics Functional Materials Subcommittee	Technical Liaison of the IPC Board of Directors
Chair Daniel Gamota Jabil Circuit Inc.	Co-Chairs Markus Riester maris TechCon	Dongkai Shangguan Flextronics International
	Josh Goldberg Taiyo America Inc.	Shane Whiteside TTM Technologies
	Vice Chair Daniel Gamota Jabil Circuit, Inc.	

Printed Electronics Functional Materials Subcommittee

Eric Barker, Flexcon Company	Greg Jablonski, PChem Associates, Inc.	Takao Someya, University of Tokyo
Jasbir Bath, Bath & Associates Consultancy LLC	Margaret Joyce, Western Michigan University	Katsuaki Suganuma, Osaka University
Neil Bolding, MacDermid Autotype Inc	Dan Lawrence, AgileTag Inc.	Kunio Takahara, JPCA-Japan Electronics Packaging and Circuits Association
Robert Boudreau, Corning Incorporated	Hirofumi Matsumoto, Nippon Mektron Ltd.	Chris Wargo, PChem Associates, Inc.
George Carson, Henkel Corporation	Richard Morris, Saxby Business Development LLC	Diane Williams, Corning Incorporated
Luis Chau, MFLEX	Debbie Orf, NPES	Yukihiro Yoshida, Mitsubishi Plastics, Inc.
Christine Coapman, Delphi Electronics and Safety	Kotaro (Kody) Osato, Toyo Ink America	Jie Zhang, Institute of Materials Research & Engineering (IMRE)
Mike Dubois, Caledon Controls Ltd.	Erika Rebrosova, Sun Chemical	
Daniel Gamota, Jabil Circuit, Inc.	Markus Riester, maris TechCon	
Josh Goldberg, Taiyo America Inc.	Masato Shishido, JPCA-Japan Electronics Packaging and Circuits Association	
Scott Gordon, DuPont		
James Haley, Ormet Circuits, Inc.		
Tom Hartmann, Topflight Corporation		

This Page Intentionally Left Blank

Table of Contents

1 SCOPE	1		
1.1 Statement of Scope	1	3.1.13 solution processable	6
1.2 Purpose	1	3.1.14 surface tension	6
1.3 Classification System	1	3.1.15 vehicle	6
1.3.1 Thick Film Functional Conductive Material Definition	1	3.1.16 viscosity	6
1.3.2 Thin Film Functional Conductive Material Definition	1	3.1.17 volatiles	6
1.3.3 Functional Conductive Material Designation	1	3.2 Specification Sheets	6
1.4 Manufacturing Processing Parameters	2		
1.4.1 Thermal Schedule	2	4 GENERAL CHARACTERIZATION METHODOLOGY	6
1.4.2 UV Schedule	2	4.1 Pre-Processed Material Requirements	6
1.4.3 Manufacturing Environment	2	4.1.1 Metal Dispersion	6
1.5 Qualification	2	4.1.2 Metal Oxide Dispersion	6
1.6 Quality Conformance	2	4.1.3 Organometallic Compounds	7
1.7 Procurement Documentation	2	4.1.4 Allotropes of Carbon Dispersion	7
1.8 Material Characteristics	3	4.1.5 Organic Dispersion	7
1.8.1 As Agreed Upon Between User and Supplier (AABUS)	3	4.1.6 Polymer Metal Blend	7
1.9 New Materials	3	4.1.7 Polymer Ceramic (Metal Oxide) Blend	7
1.10 Interpretation “shall”	3	4.1.8 Organic (Conductive) Polymer	7
1.11 Presentation	3	4.2 Standardized Description for Pre-Processed Functional Materials	7
1.12 Order of Precedence	3	4.2.1 Metal(s) Percent	7
2 APPLICABLE DOCUMENTS	3	4.2.2 Ceramic(s) Percent	7
2.1 IPC	3	4.2.3 Organic(s) Percent	7
2.2 American Society for Testing and Materials (ASTM)	4	4.2.4 Volatile(s) Percent	7
2.3 NCSL International	5	4.3 Rheology Requirements	7
2.4 ISO	5	4.3.1 Viscosity	7
3 REQUIREMENTS	5	4.3.2 Surface Tension	8
3.1 Terms and Definitions	5	4.4 Density Requirements	8
3.1.1 annealing	5	4.5 pH Requirements	8
3.1.2 carrier	5	4.6 Molecular Weight	8
3.1.3 functional conductive material	5	4.7 Visual Requirements	8
3.1.4 curing	5	4.7.1 Marking	8
3.1.5 drying	5	4.7.2 Phase Separation	8
3.1.6 micrometer	5	4.7.3 Air Entrapment	8
3.1.7 nanometer	5	4.8 Processing	8
3.1.8 particle size	5	4.8.1 Test Vehicle IPC-PE1	8
3.1.9 particle shape	6	4.8.2 Wetting Test (Dot Gain) Consistency and Print Quality	8
3.1.10 resistivity	6	4.8.3 Bridging Between Structures	8
3.1.11 rheology	6	4.9 Post-Processed Material Requirements	9
3.1.12 sintering	6	4.9.1 Mechanical Requirements	9

4.11	Shelf Life Determination	10	6.12	Statistical Process Control (SPC)	18
4.12	Working Life (Pot Life) Determination	10	6.12.1	Reduction of Quality Conformance Testing	18
4.13	Special Requirements	10	7	PREPARATION FOR DELIVERY	18
4.13.1	List of Special Requirements	10	7.1	Packaging	18
5	PRINTING DEPOSITION PROCESS	10	8	NOTES	19
5.1	Screen Printing	10	8.1	Ordering Data	19
5.2	Stencil Printing	11	8.2	Chemical Resistance	19
5.3	Gravure Printing	11	9	REFERENCES	19
5.4	Flexography Printing	11	Specification Sheets for Printed Electronics Functional Conductive Material	20	
5.5	Ink Jet Printing	12			
6	QUALITY ASSURANCE PROVISIONS	12			
6.1	Responsibility for Inspection	12			
6.2	Responsibility for Compliance	12			
6.3	Quality Assurance Program	12			
6.4	Test Equipment and Inspection Facilities	12			
6.5	Preparation of Samples	12			
6.6	Standard Laboratory Conditions	12			
6.7	Tolerances	12			
6.8	Classification of Inspection	12			
6.9	Materials Inspection	12			
6.10	Qualification Inspection	13			
6.10.1	Sample Size	13			
6.10.2	Frequency	13			
6.11	Quality Conformance Inspection	13			
6.11.1	Inspection of Product for Delivery	14			
6.11.2	Sample Unit	14			
6.11.3	Group A Inspection	14			

Figures

Figure 4-1	Test Vehicle IPC-PE1	9
Figure 5-1	Contact and Non-Impact Printing Technologies	11
Figure 6-1	Group A Inspection Report Form for Printed Electronics Functional Material	15
Figure 6-2	Group B Inspection Report Form for Printed Electronics Functional Material	17

Tables

Table 1-1	Post-Processed Functional Material Structure Designation	1
Table 1-2	Composition Designation	2
Table 1-3	Conductive Element Type Classification	2
Table 4-1	Standardized Description Functional Material	7
Table 6-1	Test Method Frequency	13
Table 6-2	Sampling Plan for Group A Inspection	14