

IPC-9503

Moisture Sensitivity Classification for Non-IC Components

IPC-9503

April 1999

A standard developed by IPC

2215 Sanders Road, Northbrook, IL 60062-6135
Tel. 847.509.9700 Fax 847.509.9798
www.ipc.org

The Principles of Standardization

In May 1995 the IPC's Technical Activities Executive Committee adopted Principles of Standardization as a guiding principle of IPC's standardization efforts.

Standards Should:

- Show relationship to DFM & DFE
- Minimize time to market
- Contain simple (simplified) language
- Just include spec information
- Focus on end product performance
- Include a feedback system on use and problems for future improvement

Standards Should Not:

- Inhibit innovation
- Increase time-to-market
- Keep people out
- Increase cycle time
- Tell you how to make something
- Contain anything that cannot be defended with data

Notice

IPC Standards and Publications are designed to serve the public interest through eliminating misunderstandings between manufacturers and purchasers, facilitating interchangeability and improvement of products, and assisting the purchaser in selecting and obtaining with minimum delay the proper product for his particular need. Existence of such Standards and Publications shall not in any respect preclude any member or nonmember of IPC from manufacturing or selling products not conforming to such Standards and Publication, nor shall the existence of such Standards and Publications preclude their voluntary use by those other than IPC members, whether the standard is to be used either domestically or internationally.

Recommended Standards and Publications are adopted by IPC without regard to whether their adoption may involve patents on articles, materials, or processes. By such action, IPC does not assume any liability to any patent owner, nor do they assume any obligation whatever to parties adopting the Recommended Standard or Publication. Users are also wholly responsible for protecting themselves against all claims of liabilities for patent infringement.

Why is there a charge for this standard?

Your purchase of this document contributes to the ongoing development of new and updated industry standards. Standards allow manufacturers, customers, and suppliers to understand one another better. Standards allow manufacturers greater efficiencies when they can set up their processes to meet industry standards, allowing them to offer their customers lower costs.

IPC spends hundreds of thousands of dollars annually to support IPC's volunteers in the standards development process. There are many rounds of drafts sent out for review and the committees spend hundreds of hours in review and development. IPC's staff attends and participates in committee activities, typesets and circulates document drafts, and follows all necessary procedures to qualify for ANSI approval.

IPC's membership dues have been kept low in order to allow as many companies as possible to participate. Therefore, the standards revenue is necessary to complement dues revenue. The price schedule offers a 50% discount to IPC members. If your company buys IPC standards, why not take advantage of this and the many other benefits of IPC membership as well? For more information on membership in IPC, please visit www.ipc.org or call 847/790-5372.

Thank you for your continued support.

IPC-9503

Moisture Sensitivity Classification for Non-IC Components

Developed by the Component & Process Compatibility Task Group (5-21c) of the Assembly & Joining Processes Committee (5-20) of IPC

IPC Standards and Artificial Intelligence (AI) Statement – 2025

IPC explicitly prohibits:

- The integration or transfer of any data whether in the form of IPC books, standards, metadata, or other formats — into AI engines or algorithms by any person or entity, including authorized distributors and their end users.
- Activities involving data harvesting, text and data mining, enrichment, or the creation of derivative works based on this data, including the use of automated data collection methods or artificial intelligence.

Any breach of these provisions is considered a copyright infringement unless expressly and formally authorized by IPC.

Users of this standard are encouraged to participate in the development of future revisions.

Contact:

IPC
2215 Sanders Road
Northbrook, Illinois
60062-6135
Tel 847 509.9700
Fax 847 509.9798

Acknowledgment

Any Standard involving a complex technology draws material from a vast number of sources. While the principal members of the Component & Process Compatibility Task Group (5-21c) of the Assembly & Joining Processes Committee (5-20) are shown below, it is not possible to include all of those who assisted in the evolution of this standard. To each of them, the members of the IPC extend their gratitude.

Assembly & Joining Processes Committee	Component & Process Compatibility Task Group	Technical Liaisons of the IPC Board of Directors	
Chairman Jim Reed Raytheon Systems	Chairman David Nicol Lucent Technologies Inc.	Stan Plzak Pensar Corp.	Peter J. Murphy Parlex Corp.

Component & Process Compatibility Task Group

Pierre Audette, NORTEL	Tim Easterling, SCI Systems Inc.	Danny Neal, Reltec Corp./Rtec Systems
Sherman M. Banks, Trimble Navigation	Will J. Edwards, Lucent Technologies Inc.	Terry F. Parham, Compaq California
Mark Barlow, Techdyne, Lytton Inc.	Werner Engelmaier, Engelmaier Associates, L.C.	Mauro Pinheiro, SMS Technologies Inc.
Ellen Berkman, Excalibur Systems Inc.	Dennis D. Epp, General Dynamics Electronics	Chris Porter, Newbridge Networks Corporation
James Mark Bird, Amkor Technology Inc.	Howard S. Feldmesser, Johns Hopkins University	Krisna Prachanronarong, GTE CSD
David W. Bittle, Raytheon Aircraft Company	Martin G. Freedman, AMP Inc.	Ray Prasad, Ray Prasad Consultancy Group
Richard W. Boerdner, EJE Research	Janet L. Green, Trace Laboratories - East	David Rassai, 3COM Corporation
Robert Borenstein, Celestica Inc.	Larry A. Hargreaves, DC. Scientific Inc.	Donald Rudy, Lucent Technologies Inc.
John L. Bourque, Shure Brothers Inc.	Brad Heath, TMD Inc.	Merlyn L. Seltzer, Delco Defense Systems Operations
David Boyle, Northrop Grumman Corporation	Albert Holliday, Lucent Technologies Inc.	Norbert Socolowski, Alpha Metals Inc.
Paul Brydges, Panametrics Inc.	Thomas L. Humpal, OEM Worldwide	Vern Solberg, Tessera Inc.
John S. Burg, 3M Company	Les Hymes, Les Hymes Associates	Gil Theroux, Honeywell Inc.
William Casey, MCMS	Matt Koebert, Eaton Corporation	Steven Torres, Corlund Electronics Corp.
Alan S. Cash, Northrop Grumman Corporation	George T. Kotecki, Northrop Grumman Corporation	Lutz E. Treutler, Fachverband Elektronik Design
Ignatius Chong, Celestica Inc.	Miriam Ludwig, Lucent Technologies Inc.	Nick Virmani, Naval Research Lab
Jack T. Cobbs, Kaiser Electronics	James F. Maguire, Boeing Defense & Space Group	Eric L. Vollmar, Methode Electronics Inc.
Steve Collins, ANTEC International Corporation	Wesley R. Malewicz, Siemens Medical Systems Inc.	Phil Wingate, ChipPAC, Inc.
Brian Crowley, Hewlett Packard Laboratories	Nicholas C. Mescia, Siemens Energy & Automation	Keith Wrouth, Smiths Industries Aerospace
Derek D'Andrade, Surface Mount Technology Centre	Donna MiLosh, LTX Corporation	Fonda B. Wu, Raytheon Systems Company
William C. Dieffenbacher, Lockheed Martin Corporation	John H. Morton, Lockheed Martin Corporation	Michael Zampini, AlliedSignal Aerospace Canada
Michele J. DiFranza, The Mitre Corp.		
Chuck Dolence, Tektronix Inc.		
Kantesh Doss, PhD, Siemens Energy & Automation		

Table of Contents

1 GENERAL	1	8 OPTIONAL WEIGHT GAIN/LOSS ANALYSIS	4
1.1 Scope	1		
1.2 Background	1	9 ADDITIONS AND EXCEPTIONS	6
2 APPLICABLE DOCUMENTS	1		
2.1 IPC	1		
2.2 Joint Industry Standards	1		
2.3 Electronic Industries Association	1		
3 APPARATUS	1		
4 CLASSIFICATION/RECLASSIFICATION	2		
5 PROCEDURE	3		
6 CRITERIA	3		
7 MOISTURE/REFLOW SENSITIVITY CLASSIFICATION	4		
		Figures	
		Figure 1 Flow Chart	5
		Tables	
		Table 1 Package Reflow Conditions	2
		Table 2 Moisture Sensitivity Levels	3
		Table 3 Classification Reflow Profiles	4