

IPC-5703

Cleanliness Guidelines for Printed Board Fabricators

Developed by the Bare Board Cleanliness Assessment Task Group (5-32c) within the Cleaning and Coating Committee (5-30) of IPC

Users of this publication are encouraged to participate in the development of future revisions.

Contact:

IPC
3000 Lakeside Drive, Suite 309S
Bannockburn, Illinois
60015-1249
Tel 847 615.7100
Fax 847 615.7105

Table of Contents

1 SCOPE	1	7 ASSESSING CLEANLINESS	17
1.1 Introduction	1	7.1 History of ROSE Testing	17
1.2 Why Printed Board Cleanliness is Important	1	7.1.1 Limitations	19
1.3 Terms and Definitions	2	7.1.2 ROSE and Printed Boards	20
2 APPLICABLE DOCUMENTS	2	7.2 Ion Chromatography	21
2.1 IPC	2	7.2.1 Why IC Data is Better and Preferred	21
2.2 American Society for Testing and Materials	3	7.2.2 Why the Industry is Moving this Way	21
3 WATER QUALITY	3	7.2.3 When to Test	22
3.1 Cleaning Additives	4	7.3 IPC-5704	22
4 PREVENTATIVE MAINTENANCE	5	7.3.1 Why These Ions?	23
5 HANDLING AND ASSOCIATED SOILS	5	7.3.2 IPC-5704 Samples	24
6 FABRICATION PROCESSES	6	7.3.3 IPC-5704 Flexibility	24
6.1 Raw Material Selection – Laminate	6	7.3.4 Acceptance of IPC-5704	24
6.2 Raw Material Storage	7	7.4 SIR Testing	25
6.3 Copper Clad Laminate Preparation	7	7.5 Other Tests	25
6.4 Clean and Apply Inner Layer Photoresist	7	7.5.1 Other Tests – Water Break Testing	25
6.5 Expose and Develop Photoresist	8	7.5.2 Other Tests – Surface Energy	25
6.6 Etch Inner Layers	8	7.5.3 Other Tests – Water Drop Testing (Comparative Tracking Index)	25
6.7 Outer Layer Imaging	9	8 REFERENCES	25
6.8 Strip Photoresist	9	9 ACKNOWLEDGEMENTS	26
6.9 Layup for Lamination	9		
6.10 Lamination	10		
6.11 Drill Holes	10		
6.12 Deburring, Etchback, and Desmear	11		
6.13 Making Holes Conductive	11		
6.14 Application of Outer Layer Photoresist	11		
6.15 Outer Layer Expose and Develop	12		
6.16 Pattern Plate and Outer Resist	12		
6.17 Etch Copper and Etch Resist Metal	12		
6.18 Solder Mask Application and Development	13		
6.19 Processing Aids	15		
6.20 Final Finish	15		
6.21 Outer Layer Marking	16		
6.22 Depanelization and Routing	16		
6.23 Electrical Test	17		
6.24 Packing / Board Storage / Shipment	17		
Figures			
Figure 1-1 Examples of Dendritic Growth.....	1		
Figure 1-2 Venn Diagram Illustrating Variables Affecting Electrochemical Failure	1		
Figure 6-1 Generic Fabrication Process for Multilayer Rigid Boards	6		
Figure 6-2 Solder Mask Adhesion Problems Caused by Inadequate Rinse Prior to Application	13		
Figure 6-3 Solder Mask Lifting from Conductor Due to Inadequate Rinse Prior to Application	14		
Figure 6-4 Solder Mask Flaking Due to Inadequate Rinse Prior to Application	14		
Figure 6-5 Solder Mask Bubbling Due to Entrapped Volatiles.....	14		
Tables			
Table 6-1 Develop and Strip Considerations	8		
Table 7-1 Equivalence Factors for ROSE Testing Equipment	18		
Table 7-2 Inorganic Ions.....	23		

Cleanliness Guidelines for Printed Board Fabricators

1 SCOPE

1.1 Introduction In many IPC standards development meetings, those individuals responsible for assessing the quality of incoming unpopulated printed boards have lamented the fact that bare printed board cleanliness is often an unknown quality parameter, often with undesired results. This is often due to the lack of understanding of materials and processes by the fabricator, or more often because the industry has driven margins so low that experienced process professionals cannot be retained by the fabricator.

Therefore, the IPC 5-32c Bare Board Cleanliness Task Group resolved to generate guidelines on those factors in the printed board fabrication process which can directly or indirectly affect the final cleanliness of packaged bare printed boards. This document is intended to be a general tutorial on items in the printed board fabrication process which can affect, directly or indirectly, cleanliness.

1.2 Why Printed Board Cleanliness is Important One of the aspects of printed board assembly reliability is electrochemical reliability, which is related to the residues left on an assembly. Some residues are benign while others are harmful. Electrochemical failure mechanisms are comprised of three elements: (1) an ionic residue; (2) an electrical potential or voltage gradient; and (3) moisture or humidity. All three must be present at some minimum level (which varies) for electrochemical failures to occur. Electrochemical failures are evidenced in two primary areas: (1) unacceptable leakage currents under humid conditions, and (2) electrochemical migration (dendritic growth). An example of dendritic growth can be seen in Figure 1-1.

The Venn diagram shown in Figure 1-2 is useful in understanding the relation between these three factors. The amount of impact can be visualized by considering the diameter of the individual circles to be proportional to the forcing function. As an example, if a device is operating in a very humid environment, the diameter of the humidity circle grows larger as does the electrochemical failure region. In addition, operating temperature and time can compound or accelerate these factors. Higher temperatures can increase dissolution of residues and can accelerate electrochemical reaction rates. If service lives are long, the risk of electrochemical failures increases.

Every printed board, or printed board assembly made from such boards, has a different cleanliness need. Unfortunately, not many assemblers or OEMs know how to determine how clean their assemblies have to be. There have been many instances where the present printed board cleanliness test methods, such as resistivity of solvent extract (ROSE) testing, have been inadequate to determine the true cleanliness of printed boards or assemblies.

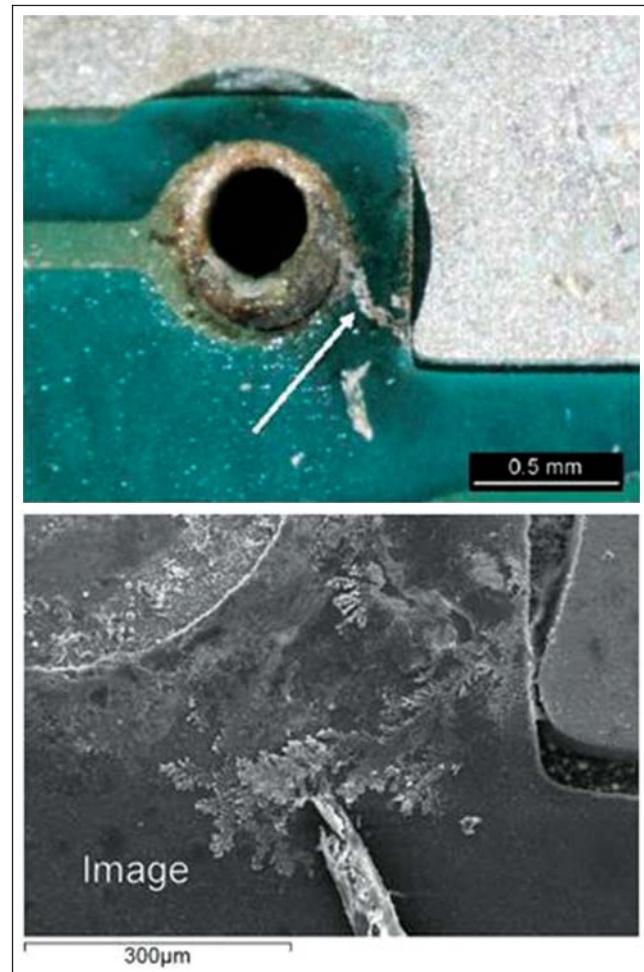


Figure 1-1 Examples of Dendritic Growth

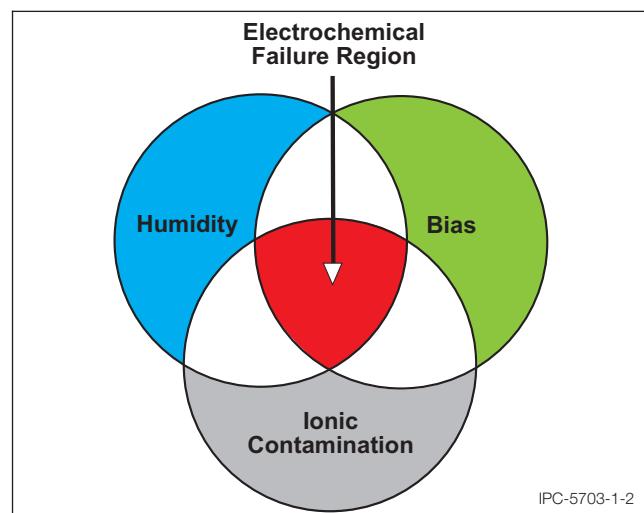


Figure 1-2 Venn Diagram Illustrating Variables Affecting Electrochemical Failure