

GEA Mission

The Global Electronics Association promotes industry growth and strengthens supply chain resilience.

About IPC Standards by Global Electronics Association

IPC standards and publications by Global Electronics Association are designed to serve the public interest through eliminating misunderstandings between manufacturers and purchasers, facilitating interchangeability and improvement of products, and assisting the purchaser in selecting and obtaining with minimum delay the proper product for their particular need. Existence of such standards and publications shall not in any respect preclude any entity from manufacturing or selling products not conforming to such standards and publications, nor shall the existence of such standards and publications preclude their voluntary use.

IPC standards and publications by Global Electronics Association are approved by committees without regard to whether the standards or publications may involve patents on articles, materials or processes. By such action, Global Electronics Association does not assume any liability to any patent owner, nor does Global Electronics Association assume any obligation whatsoever to parties adopting a standard or publication. Users are wholly responsible for protecting themselves against all claims of liabilities for patent infringement.

Global Electronics Association Position Statement on Specification Revision Change

The use and implementation of IPC standards and publications by Global Electronics Association are voluntary and part of a relationship entered into by customer and supplier. When a standard or publication is revised or amended, the use of the latest revision or amendment as part of an existing relationship is not automatic unless required by the contract. Global Electronics Association recommends the use of the latest revision or amendment.

Standards Improvement Recommendations

Global Electronics Association welcomes comments for improvements to any standard in its library. All comments will be provided to the appropriate committee.

If a change to technical content is requested, data to support the request is recommended. Technical comments to include new technologies or make changes to published requirements should be accompanied by technical data to support the request. This information will be used by the committee to resolve the comment.

To submit your comments, visit the Status of Standardization page at www.electronics.org/status.

Table of Contents

1 SCOPE	1	5.7.2	Programmer Security /
1.1 Purpose	1	5.8	Permission Management
1.2 Background.....	1	5.9	Serializing and Variable Data Programming ..
1.3 Definition of Requirements	1	5.10	16
1.4 Appendices	1	5.11	Board Power Supply Capability
1.5 Abbreviations and Acronyms	1	5.12	16
1.6 Terms and Definitions	1		ISP Line Protection Capability
1.6.1 Automated Test Equipment (ATE)	1		16
1.6.2 In-System Programming (ISP)	2		Self-test and Diagnostics Capability
1.6.3 Functional Test	2		16
1.6.4 Fixture.....	2		Easy to Duplicate Production Line.....
1.6.5 Protocol.....	2		17
1.6.6 Test Points (TP)	2		
1.6.7 Device Under Programming (DUP)	2		
1.6.8 Unit Under Test (UUT).....	2		
2 REFERENCE DOCUMENTS.....	3		
2.1 IPC	3	Table 5-5	Handshake I/O Signals
2.2 NXP	3	Table A-1	Abbreviations and Acronyms
2.3 White Papers.....	3		18
3 PCB DESIGN FOR ISP PROGRAMMING	4		
3.1 Test Points.....	4	APPENDIX A.....	18
3.2 System Basis Chip: Watchdog & Supervisors..	4	A.1	Abbreviations and Acronyms
3.3 Power Supply Information	4		18
3.4 ISP Protocol.....	5	Tables	
4 INTEGRATION	6	Table 5-5	Handshake I/O Signals
4.1 Fixture Integration	6	Table A-1	Abbreviations and Acronyms
4.1.1 ISP Wiring	6		18
4.1.2 Impedance Matching	6		
4.1.3 High-Speed Signals	8		
4.1.4 Tool Isolation.....	8		
4.1.5 EOS (Electrical Over Voltage Stress)			
Consideration.....	9		
4.2 Mechanical Integration	9		
4.3 Software Integration	9		
4.4 Process Integration	9		
5 FUNDAMENTAL CHARACTERISTICS WHEN			
CHOOSING AN ISP PROGRAMMER.....	11		
5.1 Universality	11	Figures	
5.2 Parallelism	11	Figure 1-1	Example of Manufacturing Processes
5.3 Connection to the Host	11	Flowchart.....	1
5.3.1 LAN Port	11	Figure 4-1	ISP Wiring
5.3.2 COM/RS-232 Port.....	11	Figure 4-2	Unmatched Transmission Line
5.3.3 USB Port.....	11	Figure 4-3	7
5.3.4 Handshake I/O Port	12	Figure 4-4	Matching Transmission Line
5.4 Device List.....	12	Figure 4-5	8
5.5 Technical Support.....	12	Figure 5-1	Example of Series Resistors Setup
5.6 Data Integrity Control/Verification.....	12	Figure 5-2	8
5.6.1 Device Data Integrity	12	Figure 5-3	Application Example
5.6.2 Firmware Integrity Control.....	15	Figure 5-4	13
5.7 Security.....	15	Figure 5-5	Effect of Marginally Programmed Cells.....
5.7.1 Device Security	15		14
			Adjusted Margin Level.....
			15
			Security Permission Management
			16

IPC-9271

Guidelines for In-System Programming

1.0 SCOPE

This document provides guidelines for device-level In-System Programming (ISP) as part of the printed circuit board assembly (PCBA) process. It is an aggregate of information collected from market feedback and is intended for electronic assemblies.

1.1 Purpose This document prescribes the guidelines for an ISP process to follow during printed board design and to be used for increasing efficiency, reducing programming costs, and improving productivity and quality in the production environment. The main topics of the document are the PCB design for ISP, the integration of the programmer in the production environment and fundamental characteristics when choosing an ISP programmer.

1.2 Background In-System Programming (ISP) is the capability of modern microcontrollers, memories, and other programmable devices to be programmed while already installed in a system, rather than requiring the chip to be programmed prior to being mounted into the board. A problem a test engineer must solve is that of integrating In-System Programming (ISP) into an existing test system. Usually, an Automatic Test Equipment (ATE) performs parametric and functional tests on the Unit Under Test (UUT) that is placed inside a custom, unit-specific test fixture. The fixture routes several ATE test lines to the various test points on the UUT. The same fixture is used to In-System Program the target device(s) (or DUP, Device Under Programming) in the UUT. In-System Programming usually takes place after the component parametric test and before the functional test. See Figure 1-1.

Figure 1-1 Example of Manufacturing Processes Flowchart

Note: Many other process flowcharts are possible depending on the focus of production throughput optimization for high-volume production or minimizing investments for low-volume production. They could also depend on the global test strategy. For example, a first ISP step is used to embed a particular program for functional test use only. After that, a final ISP step is necessary to program the customer file.

The great advantage is that the programmable device will be configurable with data and firmware at the time of testing the board and can also be reprogrammed subsequently without having to remove the device. Now, this process has become an integral part of the production cycle.

1.3 Definition of Requirements This document is intended to be used as a guide. No specific requirements or criteria are included unless separately and specifically called out in a contractual agreement or other documentation.

The word “should” reflects recommendations and is used to reflect general industry practices and procedures for guidance only. Line drawings and illustrations are depicted herein to assist in the interpretation of the written requirements of this Standard. The text takes precedence over the figures.

1.4 Appendices Appendices to this standard are not binding requirements unless separately and specifically required by this standard, the applicable contracts, assembly drawing(s), documentation or purchase orders.

1.5 Abbreviations and Acronyms Periodic table elements are abbreviated in the standard. See Appendix A for full spellings of abbreviations (including elements) and acronyms used in this standard.

1.6 Terms and Definitions Other than those terms listed below, the definitions of terms used in this standard are in accordance with IPC-T-50.