

IPC/JEDEC-9706

Mechanical Shock In-situ Electrical Metrology Test Guidelines for FCBGA SMT Component Solder Crack and Pad Crater/Trace Crack Detection

Developed by the JEDEC Reliability Test Methods for Packaged Devices Committee (JC-14.1) and the SMT Attachment Reliability Test Methods Task Group (6-10d) of the Product Reliability Committee (6-10) of IPC

Users of this publication are encouraged to participate in the development of future revisions.

Contact:

IPC
3000 Lakeside Drive, Suite 309S
Bannockburn, Illinois
60015-1249
Tel 847 615.7100
Fax 847 615.7105

This Page Intentionally Left Blank

Acknowledgment

Members of the JEDEC Reliability Test Methods for Packaged Devices Committee (JC-14.1) and the SMT Attachment Reliability Test Methods Task Group (6-10d) of the IPC Product Reliability Committee (6-10) have worked together to develop this document. We would like to thank them for their dedication to this effort. Any document involving a complex technology draws material from a vast number of sources. While the principal members of the SMT Attachment Reliability Test Methods Task Group are shown below, it is not possible to include all of those who assisted in the evolution of this standard. To each of them, the members of JEDEC and IPC extend their gratitude.

Product Reliability Committee

Chair
Reza Ghaffarian, Ph.D.
Jet Propulsion Laboratory

Vice Chair
James Monarchio
TTM Technologies, Inc.

JC-14.1 JEDEC Reliability Test Methods for Packaged Devices Committee

Chair
Ife Hsu
Intel Corporation

6-10d SMT Attachment Reliability Test Methods Task Group

Chair
Reza Ghaffarian, Ph.D.
Jet Propulsion Laboratory

Vice Chair
Vasu Vasudevan
Intel Corporation

6-10d SMT Attachment Reliability Test Methods Task Group

Neil Adams, Circuit Check Inc.
Mudasir Ahmad, Cisco Systems Inc.
Aileen Allen, Hewlett-Packard Company
Michael Azarian, University of Maryland
Elizabeth E. Benedetto, Hewlett-Packard Company
Trevor S. Bowers, Adtran Inc.
Nicole Butel, Avago Technologies
Beverley Christian, BlackBerry
Harold Ellison, Quantum Corporation
Dennis Fritz, MacDermid, Inc.
Enrico Galbiati, GEST Labs S.r.l. a Socio Unico
David D. Hillman, Rockwell Collins
Christopher Hunt, National Physical Laboratory
Jeffrey C.B. Lee, Integrated Service Technology - ISTi
Anna Lifton, Alpha
Anne Lomonte, Draeger Medical Systems, Inc.
Alan McAllister, Intel Corporation

James J. Monarchio, TTM Technologies, Inc.
Jim Mulvey, Lockheed Martin Space Systems Company
David Nelson, Raytheon Company
Keith G. Newman, Hewlett-Packard Company
Satish Parupalli, Intel Corporation
Jagadeesh Radhakrishnan, Intel Corporation
John M. Radman, Trace Laboratories - Denver
Gnyaneshwar Ramakrishna, Cisco Systems Inc.
Paul Reid, PWB Interconnect Solutions Inc.
Russell S. Shepherd, Microtek Laboratories Anaheim
Julie Silk, Agilent Technologies
Ramgopal Uppalapati, Intel Corporation
Wesley M. Wolverton, Raytheon Systems Company
Andy Zhang, Texas Instruments

A special note of thanks goes to Ramgopal Uppalapati, Mike H. Williams, and Sanjay Goyal of Intel Corporation for coordinating the development of this document.

Table of Contents

1 SCOPE	1
1.1 Purpose	1
1.2 Background	1
1.3 Performance Classification	1
1.4 Definition of Terms	1
1.4.1 FCBGA package	1
1.4.2 SMT	1
1.4.3 Product Component	1
1.4.4 Voltage Metrology	1
1.4.5 Power Ball	1
1.4.6 Safe xyz	2
1.4.7 Ball-level Fault Isolation	2
1.4.8 Signal Ball	2
1.4.9 Daisy-chain	2
1.4.10 TH	2
1.4.11 G	2
1.4.12 α -error	2
1.4.13 β -error	2
1.4.14 TV	2
1.4.15 Event detector	2
1.4.16 USL	2
1.4.17 FPGA	2
1.5 Interpretation "Shall"	2
2 APPLICABLE DOCUMENTS	2
2.1 IPC	2
2.2 JEDEC	2
2.3 Joint Industry Standard	2
3 SAMPLE SIZE	2
4 APPARATUS AND SET UP	3
4.1 Voltage Metrology Introduction	3
4.2 Voltage Metrology	3
4.3 Lab Set-up Description	4
4.3.1 Test Board with FCBGA Component of Interest	4
4.3.2 Electrical Monitoring Device/Equipment and Software	5
4.3.3 Peripherals	5
5 FAILURE DISPLAY AND CRITERION	5
6 DATA ANALYSIS GUIDELINES	5
7 FAILURE ANALYSIS	5
8 REFERENCES	5
Appendix A In-situ Metrology Case Study — Voltage Metrology Based Lab Set-up Illustration	6
A.1 Component FCBGA	6
A.2 Test Board	6
A.3 Plug Connector	6
A.4 Ribbon Cables	6
A.5 Receptacle Connectors	7
A.6 Interface Box	
A.7 Voltage Measuring Device	8
A.8 Assembly/Set-up	8
A.9 Failure Display and Criteria	8
Appendix B Voltage In-situ Metrology Validation Results	10
B.1 Component-level Test with no Thermal Solution Compression Load	10
B.2 System-level Test with FCBGA Thermal Solution Compression Load	11
Appendix C Connector Validation Case Study Results	13
Appendix D Hand-probe False Failure Rate compared to Shock Voltage In-situ Detection Metrology	14
Appendix E Voltage Metrology Measurement Capability Analysis Study Results	15
Figures	
Figure 4-1 Schematic Illustrating the Concept behind the Voltage Metrology	3
Figure 4-2 Schematic Illustrating Application of Voltage Metrology on Daisy Chain Test Vehicles	3
Figure 4-3 Schematic illustrating Package side Connections (dotted lines) to Enable Ball by Ball Fault Isolation on Daisy-chained Test Vehicles	4
Figure 4-4 Generic Shock In-situ Metrology Test Set-up	4
Figure A-1 Board Routing to Enable Voltage Metrology on a Product Package	6
Figure A-2 A 2x7 pin Connector Soldered to a 14 Pin Header on the Board	6
Figure A-3 Illustration of a 14 Wire Ribbon Cable	7
Figure A-4 Illustration Showing 2 x 7 Female Connector	7
Figure A-5 Illustration Showing Interface Box	7
Figure A-6 Shock In-Situ Metrology Test Set-up	8
Figure A-7 Failure Display during a Shock Test using Voltage Metrology	9
Figure B-1 Test Board Design and Monitored Corner Balls (in green) and Shock Test Profile used for In-situ Metrology Validation	10
Figure B-2 In-situ Metrology Validation Results under no Thermal Solution enabling Load Condition	11
Figure B-3 Schematic Showing System-level Test PCI Configuration Set-up with Heat Sink enabling on FCBGA Component	11
Figure B-4 In-situ metrology Validation Results under 20lbs Thermal Solution enabling Load Condition	12
Figure B-5 In-situ metrology Validation Results under 60lbs Thermal Solution enabling Load Condition	12
Figure C-1 Picture Showing Test Board Design, Shock Profile, and Connector Validation Results	13
Figure D-1 Results Plot showing Fails that would Have Been Passed after the Test	14
Figure E-1 Measurement Correlation Study Results for one such Voltage-based In-situ Metrology	15
Tables	
Table D-1 Hand Probe False Failure Rate	14

Mechanical Shock In-situ Electrical Metrology Test Guidelines for FCBGA SMT Component Solder Crack and Pad Crater/Trace Crack Detection

1 SCOPE

This document establishes metrology guidelines to electrically and reliably detect solder joint opens on Flip-Chip Ball Grid Array (FCBGA) SMT board assemblies during the mechanical shock or drop event. In-situ metrology can monitor not only FCBGA assembly with daisy-chain components but can also monitor product components with power or ground planes or equivalent daisy-chain test structures. In addition, the metrology is capable of providing ball-level resolution provided appropriate test structures are designed into the test package and board. The metrology was validated for thermal solutions with compression load. Although the initial focus of this metrology is specific to FCBGA assemblies in mechanical shock or drop testing, the same approach can eventually be extended to other stress tests (e.g. vibration, mechanical bend, and temperature cycle) and/or components (including other BGAs, sockets assemblies and TH/SMT leaded/leadless assemblies) depending on evolution and adoption of the guidelines (title and scope could be updated based on the outcome from future planned studies). This metrology may not be capable of detecting partial solder ball cracks, since resistance does not significantly change until the solder crack is close to 100%. Finally, the detection of pad cratering failures will be possible through use of this metrology, provided there is a complete trace crack.

1.1 Purpose This document provides:

- Description of concept behind efficient in-situ electrical metrology to reliably detect FCBGA assembly solder joint opens during mechanical shock or drop test
- Guidelines for special daisy-chain test structure to standardize test board design for ball-level electrical monitoring of FCBGA joints
- Minimum requirements to establish the metrology in the lab for execution
- Definition for in-situ electrical open detection criteria
- Guidelines for electrical and FA data analysis

1.2 Background Some of the existing metrologies, including JESD22-B110, JESD22-B11, and IPC/JEDEC-9703, do not provide in-situ electrical monitoring of FCBGA solder joint opens during test. They either rely on electrical test before and after the test or use less efficient destructive physical analysis techniques which are either not reliable (see Appendix D for false fail rate based on hand probe e-test), cost-effective, or time consuming. The proposed shock metrology provides reliable electrical data with ball-level resolution, thereby eliminating the need for further fault isolation. Finally, the metrology provides instantaneous response in display format, thereby reducing the testing throughput time with minimal to no physical destructive failure analysis needs [1]. Solder joint built-in self-test (SJ BIST) in-situ metrology usage was neither demonstrated on a large scale sample size, nor was it applied on non-field programmable gate array (non-FPGA) packages [2]. Traditional daisy chain resistance measurement is usually limited by a combination of speed and channel count. In addition, the metrology does not provide ball-level resolution or cannot monitor board assemblies with real product components. Current based event detectors are more prone to noise due to poor resolution and no results display (to confirm failures) compared to voltage metrology.

1.3 Performance Classification At this point in time, the reliability requirements need to be established by agreement between customer and supplier and this document only provides guidelines on how to use in-situ test method.

1.4 Definition of Terms The definition of all terms used herein **shall** be as specified in IPC-T-50 and as defined below.

1.4.1 FCBGA package: (Flip-chip) ball grid array component (does not include connectors or sockets).

1.4.2 SMT Surface-mount technology.

1.4.3 Product Component Any functional component used in electronic industry that has ground or power planes or equivalent test structures.

1.4.4 Voltage Metrology Name of the new metrology described in this document that can detect electrical failures on product component.

1.4.5 Power Ball Ball on the FCBGA component used for voltage power.