

IPC-MC-790

Guidelines for Multichip Module Technology Utilization

Developed by the IPC Multichip Module Subcommittee of the Hybrid and Related Technologies Committee of IPC

About this document

This document published by IPC is for informational purposes and can serve as a baseline for selecting an appropriate MCM technology. It is not intended to be a standard and in fact, this document is expected to evolve with significant technological developments.

This document reports on work which has been done by a variety of individuals and organizations concerned with increasing system performance and reliability through multichip module technology. You, as the reader, are invited to review the content of this document and communicate your comments and ideas for additional details that may serve the industry to the appropriate trade associations or technical societies. In this way, the infrastructure necessary to implement this new philosophy for packaging will make its way forward.

Thanks to Chairman Phil Marcoux, ISHM and IPC are in the process of a detailed update program. It is expected that the result of this effort will culminate in a hardbound version that will provide an excellent reference tool. IPC will also consider future review of the MC-790 as more information becomes available. You are invited to participate in any of the revision or update processes.

Users of this standard are encouraged to participate in the development of future revisions.

Contact:

IPC
2215 Sanders Road
Northbrook, Illinois
60062-6135
Tel 847 509.9700
Fax 847 509.9798

Table of Contents

Section 1	Technology Overview	5.4	Land Patterns	63
1.0	INTRODUCTION	5.5	Vias	63
1.1	Multichip Module Classification	5.6	Resistors	63
1.2	Materials Data.....	5.7	Integrated Circuit Die (Chips)	68
1.3	Advantages and Disadvantages of Multichip Modules	5.8	Dielectrics	68
1.4	Design Cycle.....	5.9	Substrates	68
1.5	Assembly Options.....			
1.6	Substrate (Interconnect Carrier)			
1.7	Thermal Issue.....			
Section 2	Multichip Module General Design Considerations	Section 6	Wire Bond Technology	
2.0	INTRODUCTION	6.0	INTRODUCTION	73
2.1	Materials	6.1	Design for Wire Bonding	73
2.2	Components	6.2	Components	74
2.3	Multichip Module Design Layout.....	6.3	Wire Bonding.....	75
2.4	Packaging and Higher-Level Assembly			
2.5	Electrical Design Guidelines			
Section 3	MCM-C Design Considerations (Ceramic/Glass Based Materials)	Section 7	Tape Automated Bonding (TAB) Technology	
3.0	INTRODUCTION	7.0	INTRODUCTION	80
3.1	Layout	7.1	Inner Lead Bonding (ILB)	80
3.2	Conductor Pattern	7.2	Outer Lead Bonding (OLB)	81
3.3	Conductor Routing			
3.4	Land Patterns			
3.5	Wire Bonds			
3.6	Vias			
3.7	Resistors			
3.8	Substrate Requirements			
Section 4	MCM-L Design Considerations (Organic Based Materials)	Section 8	Flip Chip Bonding Attachment Techniques	
4.0	INTRODUCTION	8.0	INTRODUCTION	87
4.1	Design Layout.....	8.1	Design for Flip Chip	87
4.2	Conductor Pattern.....	8.2	Thermal Considerations.....	88
4.3	Land Pattern.....	8.3	Interconnection	89
4.4	Holes	8.4	Alternative to Flip-Chips.....	89
4.5	Resistors			
4.6	Substrate Materials			
Section 5	MCM-D Design Considerations (Deposited Dielectric Films on Various Base Materials)	Section 9	Design for Test, Modification, and Repair	
5.0	INTRODUCTION	9.0	INTRODUCTION	91
5.1	Layout	9.1	Design for Test	91
5.2	Conductor Pattern.....	9.2	Design for Modification and Repair	92
5.3	Conductor Routing	9.3	Minimizing Rework/Repair.....	93
Section 10	Environmental Protection			
10.0	INTRODUCTION			
10.1	Conformal Coating			
10.2	Encapsulation			
10.3	Plastic Packaging			
10.4	Laminated Modules (Smart Cards).....			
10.5	Metal Enclosures			
Section 11	Reliability Engineering Guidelines			
11.0	INTRODUCTION			
11.1	Reliability Data.....			
11.2	Reliability Definitions.....			
11.3	Constant Failure Rate			
11.4	Failure Rate of Multiple-Element Systems			
11.5	Accelerated Life Testing			

11.6	Failure Mechanisms in MCMs.....	107	Figure 3-10	Nominal dimensions for chip mounting lands (see Table 3-2).....	37
11.7	Construction Analysis.....	108	Figure 3-11	Wire bond land sizes and locations	38
11.8	Other Reliability Tests.....	108	Figure 3-12	Nominal via window dimensions	38
Section 12 Applications			Figure 3-13	Illustration of various multilayer via designs ..	38
12.0	INTRODUCTION	109	Figure 3-14	Routing conductors through multiple dielectric layers.....	39
12.1	Current Applications.....	109	Figure 3-15	Use of a blind through-hole land.....	39
Section 13 Reference Documents			Figure 3-16	Preferred thick-film resistor configurations	39
13.0	REFERENCE DOCUMENTS	120	Figure 3-17	Thick-film screened resistor size and location	39
13.1	Institute for Interconnecting and Packaging Electronic Circuits (IPC)	120	Figure 3-18	Thick-film resistor length/width/power	40
13.2	Electronic Industries Association (EIA) ..	120	Figure 3-19	Preferred layout for matched thick-film resistors	40
13.3	Department of Defense (DoD).....	121	Figure 3-20	Preferred layout for trimming of thick-film resistors	41
13.4	American National Standards Institute (ANSI).....	121	Figure 4-1	Etched conductor characteristics	46
13.5	American Society for Testing Materials (ASTM).....	121	Figure 4-2	Conductor thickness and width for internal and external layers (inches)	48
Section 14 Terms and Definitions			Figure 4-3	Conductor spacing optimization between lands	50
14.0	Terms and Definitions	122	Figure 4-4	Large conductive layers with isothermal conductors	50

Figures

Figure 1-1	Typical pin count per integrated circuit	2	Figure 4-5	Examples of modified land shapes	51
Figure 1-2	Forecast system clock speed increase 1987-92.....	3	Figure 4-6	External annular ring	51
Figure 1-3	Price/density relationships.....	4	Figure 4-7	Internal annular ring	51
Figure 1-4	Interconnection density vs. line technology	5	Figure 4-8	Typical thermal relief in planes.....	52
Figure 1-5	Expansion of Packaging Materials	8	Figure 4-9	Clearance area in planes, mm [in] conductors	52
Figure 1-6	Conductivity of Packaging Materials	8	Figure 4-10	Solder resist windows.....	53
Figure 1-7	Methods of 3D die integration	10	Figure 4-11	Chip resistor	53
Figure 1-8	Eight-Layer MCM-L	12	Figure 4-12	Land patterns for rectangular chip resistors, mm [in].....	54
Figure 2-1	Resistor paste stability	23	Figure 4-13	Solder fillet formation.....	54
Figure 2-2	Inductance/wire length relationships	23	Figure 4-14	Etched resistor shape	57
Figure 2-3	Example of total thermal resistance calculation	31	Figure 4-15	Dielectric layer thickness measurement.....	59
Figure 2-4	Thermal resistance during heat spreading	31	Figure 5-1	Sequence of events for MCM layout.....	62
Figure 3-1	Sequence of events for MCM layout.....	32	Figure 5-2	Orientation for conductor-resistor patterns	62
Figure 3-2	Final configuration of MCM-C using wire bonding	33	Figure 5-3	Land and conductor geometries	63
Figure 3-3	Orientation for conductor-resistor patterns	34	Figure 5-4	Nominal thin-film conductor and land dimensions (see Table 5-3)	64
Figure 3-4	Land and conductor geometries	34	Figure 5-5	Nominal dimensions for chip mounting lands (see Table 5-4)	65
Figure 3-5	Conductor interconnects external to the dielectric	35	Figure 5-6	Exit land/alignment/misalignment considerations	65
Figure 3-6	Spacing between adjacent conductors running over a dielectric edge	35	Figure 5-7	Recommended approach for identifying exit leads/pins for standard packages	66
Figure 3-7	Preferred parallel conductor design running over a dielectric edge	35	Figure 5-8	Nominal thin-film resistor design dimension (see Table 5-5)	67
Figure 3-8	Overlap between top and bottom conductors over a dielectric edge	35	Figure 5-9	Nominal thin-film resistor dimensions showing resistor-to-conductor spacing (see Table 5-5)	67
Figure 3-9	Examples of die bonds and wire bonds in multilayer designs	35	Figure 5-10	SiO ₂ on silicon MCM-D substrate	69
			Figure 5-11	BCB on silicon MCM-D	70

Figure 5-12	Polyimide MCM-D on copper (or aluminum) base	70	Figure 12-13	Rockwell 5-million-instruction-per-second dual processor on a silicon substrate, 25-micrometer lines, and four metalization layers	115
Figure 5-13	Polyimide MCM-D on ceramic	71	Figure 12-14	An example of an inexpensive MCM-L	116
Figure 6-1	Wire bonding guidelines	73	Figure 12-15	An example of an MCM-C, which is termed by some "a conventional thick-film hybrid" — Fujitsu	116
Figure 6-2	Ball bonding layout features	73	Figure 12-16	ADC574P converter	117
Figure 6-3	Mechanics of ultrasonic wire bonding	77	Figure 12-17	Advanced packaging systems	118
Figure 6-4	Hydrogen torch flame-off shown with electrostatic ball for application	78	Figure 12-18	T.I.	118
Figure 6-5	Typical ball bonding cycle	79	Figure 12-19	Irvine Sensors Corp.	119
Figure 7-1	Excising of leaded die from tape carrier	80			
Figure 7-2	TAB mounting options	82			
Figure 7-3	Solder reflow	82			
Figure 7-4	Single point TAB bonding wedge	83			
Figure 7-5	Laser augmented thermosonic TAB bonding tool	84			
Figure 7-6	Trapezoidal trench TAB lead bonding tool	84	Table 1-1	Characterization of Selected MCM Market Segments	1
Figure 7-7	Deep narrow groove waffle pattern TAB bonding tool tip	85	Table 1-2	Multichip Interconnect Attributes by Classification Multichip Modules	7
Figure 7-8	In-line and cross TAB lead bonding tool	86	Table 1-3	General Multichip Material Properties	7
Figure 7-9	In-line and cross TAB lead bonding tool	86	Table 1-4	End Use Environments	9
Figure 8-1	Typical flip chip	87	Table 2-1	Conductor System Attributes	15
Figure 8-2	The IBM "Thermal Conduction Module"	88	Table 2-2	Film Resistor Characteristics	16
Figure 8-3	Beam leaded IC wafer	89	Table 2-3	Dielectric Comparisons	16
Figure 8-4	Individual beam-leaded IC	89	Table 2-4	Typical Solder Systems	17
Figure 8-5	Beams welded to substrate	89	Table 2-5	Properties of Adhesives	19
Figure 8-6	Micro SMT package—cross sectional view	90	Table 2-6	Derating Guidelines	21
Figure 8-7	Micro SMT package—added metallized cap ...	90	Table 2-7	Ceramic As-Fired Dimensions	25
Figure 10-1	Plastic molded multichip	100	Table 2-8	Dimensional Tolerance	25
Figure 10-2	Multichip IC exploded view	100	Table 2-9	Typical Materials Thermal Conductivity	27
Figure 10-3	Matrix of substrates	101	Table 3-1	Dimensional Constraints for Thick-Film Conductors and Lands	34
Figure 11-1	Exponential failure rate distribution	105	Table 3-2	Chip Mounting Lands	36
Figure 11-2	Typical "bathtub" failure curve for electrical components	105	Table 3-3	Interconnection Technique Substrate Temperatures	38
Figure 12-1	Technology life chart	109	Table 3-4	Nonphysical Substrate Selection Criteria	41
Figure 12-2	DEC multichip module	110	Table 3-5	Physical Characteristics of Substrates	42
Figure 12-3	Dow	112	Table 4-1	Typical Values to Be Added or Subtracted from the Desired Nominal Conductor Width	47
Figure 12-4	MCC	112	Table 4-2	Electrical Conductor Spacing	49
Figure 12-5	Unistructure—A flexible leaded component packs two megabytes of memory into the area of one 256K chip	113	Table 4-3	Conductor Width Tolerances mm [in]	49
Figure 12-6	Advanced packaging system	113	Table 4-4	Minimum Standard Fabrication Allowance	50
Figure 12-7	Memory module—NEC	114	Table 4-5	Annular Rings (Minimum)	51
Figure 12-8	AT&T	114	Table 4-6	Minimum Hole Location Tolerances	54
Figure 12-9	Prototype fiber optic transmitter	114	Table 4-7	Plated-Through Hole Aspect Ratios	55
Figure 12-10	Z-systems. MCM designed for avionics computer, with diffused components in silicon substrate and PGA package.	115	Table 4-8	Minimum Plated-Through Hole	55
Figure 12-11	Polycon silicon-on-silicon MCM designed for military application, using BCB dielectric and aluminum metalization	115	Table 4-9	Minimum Drilled Hole Size	55
Figure 12-12	Simple MCM utilizing four chips and TAB technology. Package sealing is accomplished with seam or laser welding....	115	Table 4-10	Minimum Drilled Hole Size for Buried Vias	56
			Table 4-11	Minimum Drilled Hole Size	56
			Table 4-12	Clad Laminate Maximum Operating Temperatures	58
			Table 4-13	Guide to Laminate Thickness	59

Tables

Table 1-1	Characterization of Selected MCM Market Segments	1
Table 1-2	Multichip Interconnect Attributes by Classification Multichip Modules	7
Table 1-3	General Multichip Material Properties	7
Table 1-4	End Use Environments	9
Table 2-1	Conductor System Attributes	15
Table 2-2	Film Resistor Characteristics	16
Table 2-3	Dielectric Comparisons	16
Table 2-4	Typical Solder Systems	17
Table 2-5	Properties of Adhesives	19
Table 2-6	Derating Guidelines	21
Table 2-7	Ceramic As-Fired Dimensions	25
Table 2-8	Dimensional Tolerance	25
Table 2-9	Typical Materials Thermal Conductivity	27
Table 3-1	Dimensional Constraints for Thick-Film Conductors and Lands	34
Table 3-2	Chip Mounting Lands	36
Table 3-3	Interconnection Technique Substrate Temperatures	38
Table 3-4	Nonphysical Substrate Selection Criteria	41
Table 3-5	Physical Characteristics of Substrates	42
Table 4-1	Typical Values to Be Added or Subtracted from the Desired Nominal Conductor Width	47
Table 4-2	Electrical Conductor Spacing	49
Table 4-3	Conductor Width Tolerances mm [in]	49
Table 4-4	Minimum Standard Fabrication Allowance	50
Table 4-5	Annular Rings (Minimum)	51
Table 4-6	Minimum Hole Location Tolerances	54
Table 4-7	Plated-Through Hole Aspect Ratios	55
Table 4-8	Minimum Plated-Through Hole	55
Table 4-9	Minimum Drilled Hole Size	55
Table 4-10	Minimum Drilled Hole Size for Buried Vias	56
Table 4-11	Minimum Drilled Hole Size	56
Table 4-12	Clad Laminate Maximum Operating Temperatures	58
Table 4-13	Guide to Laminate Thickness	59

Table 4-14	Copper Foil/Film Requirements	60	Table 10-4	Electrical Properties of Encapsulating and Coating Materials	99
Table 4-15	Metal Core Substrates	60	Table 10-5	Sealing Method Hermeticity	101
Table 5-1	MCM-D Material and Conductor Fabrication Options	61	Table 10-6	Mechanical Properties of Enclosure Materials	102
Table 5-2	Electrical Characteristics	62	Table 10-7	Thermal Properties of Enclosure Materials	102
Table 5-3	Dimensional Constraints for Thin-film Conductors and Lands	63	Table 10-8	Physical Properties of Materials	102
Table 5-4	Chip Mounting Lands	64	Table 10-9	Viable Package Materials	103
Table 5-5	Nominal Dimensions for Thin-Film Resistors ...	66	Table 11-1	MCM Circuit Element Base Failure Rates (%/1000 hr)	107
Table 5-6	Properties of Dielectric Substrate Materials	69	Table 11-2	Statistical Factors for a 90% Lower Confidence Limit	107
Table 6-1	Aluminum and Gold Wire Sizes and Ratings ...	74	Table 11-3	Comparative Failure Rates for Various Bonding Techniques (%/1000 hr).....	108
Table 6-2	Wire Bonding Comparisons	76	Table 12-1	Chip-mounting Specs of Four Major Mainframes	111
Table 9-1	Typical Functional Test Status	92			
Table 10-1	Coating Thickness	94			
Table 10-2	Thermal Properties of Encapsulating	97			
Table 10-3	Mechanical Properties of Encapsulating and Coating Materials	98			

Foreword

The developments over the past 8–10 years reflected in this document have resulted in a variety of new materials, structures, and interconnect methodologies. This “smorgasbord” of MCM technology is shown in Figure F-1. The selection of the elements that make up a structure to meet the systems level needs initially appears to be a difficult problem in the current environment. However, the choices available should be viewed as part of the beauty of this technology.

Initially, system requirements should be developed on a hierachal basis. A simple high-level breakdown of a system is shown in Figure F-2. System requirements for cost, reliability and performance must be clearly understood in the context of the application and system environment. In this way, requirements are logically developed and an understanding of their interrelationships can be inferred or modeled.

The complexity of an MCM structure demands the development of requirements for the structure from system level considerations. The next step is to work with system partitioning concepts that make sense in terms of system cost and performance. For example, the designer should question whether it makes sense to use single chip packaging,

manufacture a single module on a 10.2 cm [4 in] substrate, or four modules on a 5.1 cm [2 in] substrate. Perhaps the answer is the latter when cost is compared to performance requirements for the system. This process of system partitioning may require an iteration or two following the initial technology selection in order to develop accurate costs as the process of developing a module-based system progresses.

Following the development of system requirements and partitioning, a specific module can be synthesized which meets the systems needs through a balancing of module attributes related to cost, performance, and reliability. At this point, IPC-MC-790 can become a useful tool in understanding the various module options and the relationship of these attributes to a potential structure. This is done through the use of comparisons of interconnect and substrate properties, manufacturing costs and other criteria for MCM-L, MCM-D, and MCM-C as defined in section 1 of the document. Table F-1 shows these various module attributes and their relative weights for these general categories.

The selection of a general category is initially made through comparing system requirements to module attributes. This should be done in a quantitative fashion

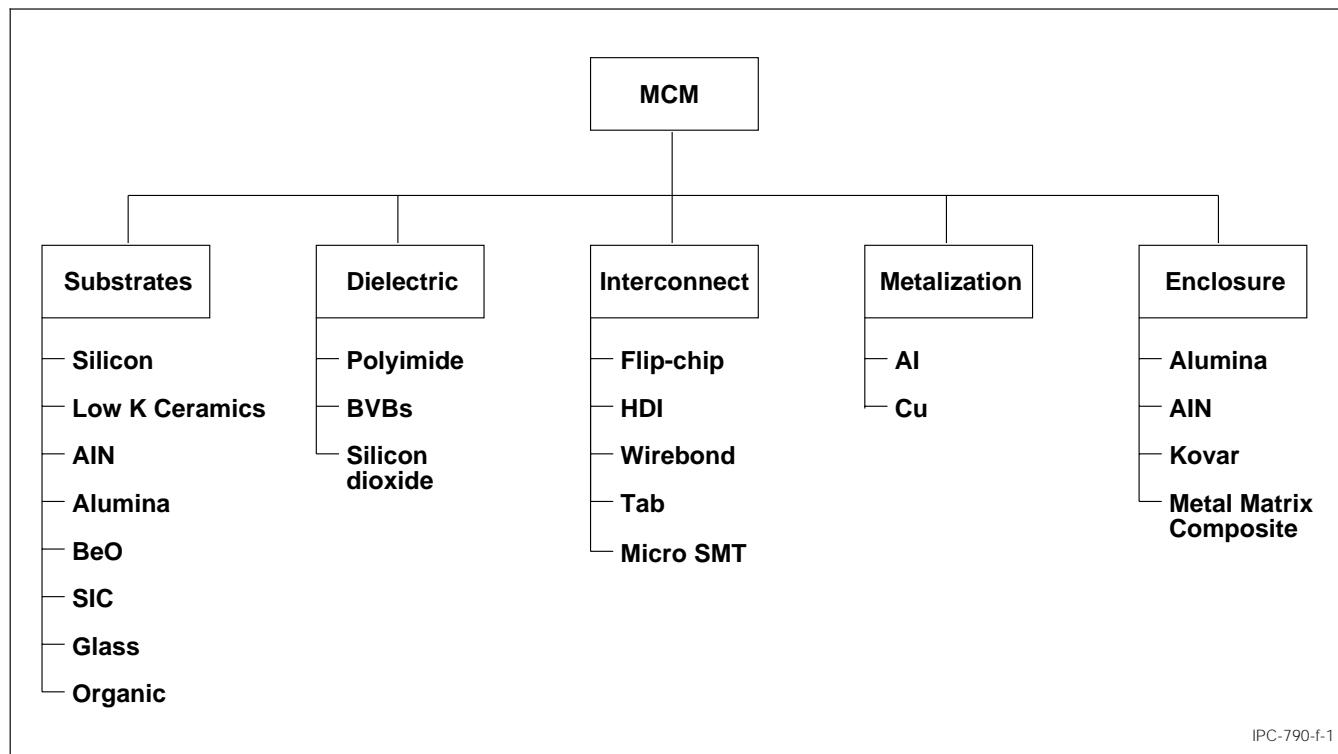


Figure F-1 MCM options

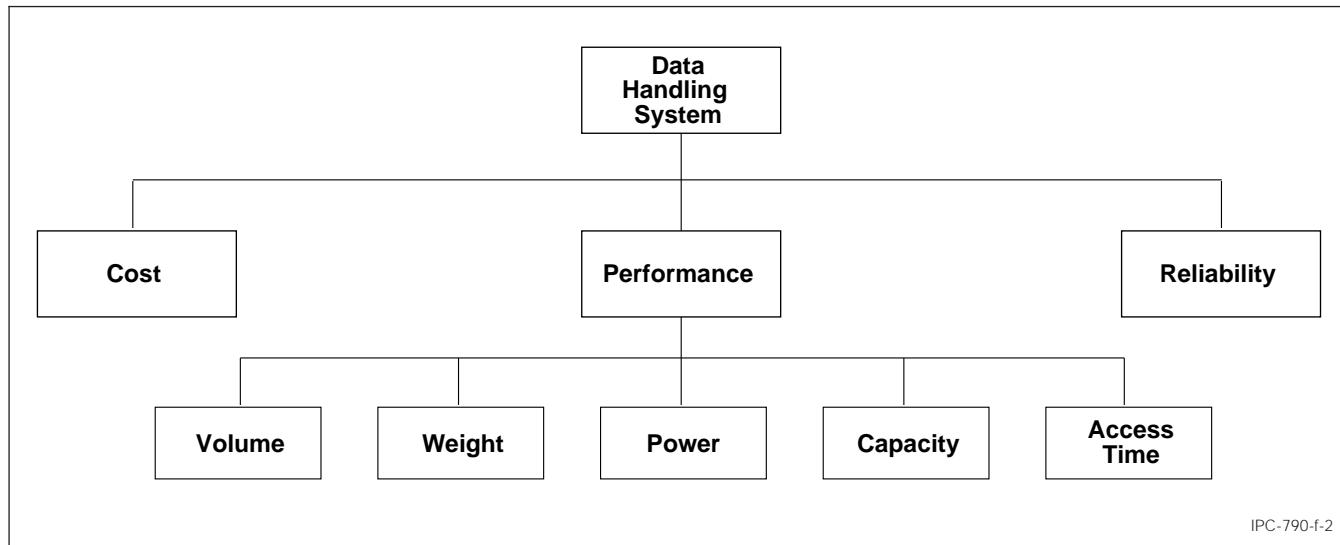


Figure F-2 Electronic system packaging hierarchy

Table F-1 Multichip Module Parameter Complexities

Parameter	Thick-film MCM-Circuits	Thin-film MCM-D circuits	MCM-L circuits
Performance	Medium	High	Medium
Design flexibility, digital	Medium	High	Medium
Analog	High	High	Low
Plastics	Low	Low	Medium
Power dissipation	High	High	Low
Frequency limit	Medium	High	Medium
Voltage Swing	Medium	Medium	Low
Size	Small	Smallest	Small
Package density	Medium	High	Medium
Reliability	High	High	High
Circuit development time (prior to prototype)	1- 2 month	2-3 month	1 month
1:1 design transfer from bench	Yes	Yes	Yes
Turnaround time for design change	2 weeks	4 weeks	2 weeks
Part cost, low quantity	High	Impractical	Medium
High quantity	Medium	Medium	Low
Cost of developing one circuit	Medium	High	Low
Capital outlay	Low	Medium	Low
Production setup and tooling costs	Low	Medium	Low

Section One

Technology Overview

1.0 INTRODUCTION

Electronic packaging continues to focus on the ever increasing need for higher electrical speed and higher interconnection density. In existing packaging concepts using printed board assemblies and individually packaged integrated circuits, performance may be sacrificed because of the signal path length needed to interconnect the semiconductors contained in the various packages.

In contrast to the above, improvements in speed, reliability, and density accompany the use of unpackaged integrated circuit chips on fine line interconnection substrates. A functional, packaged module exhibiting these attributes will be called a "Multichip Module" (MCM), and is the subject of this document. A variety of materials and techniques may be employed in creating an MCM. In section 2.0, various approaches are categorized, and the reader is led through a decision-making process to assist in the selection of the proper MCM technology for a given set of technical requirements. Later sections provide detailed information regarding each technology type.

The balance of this introduction discusses the drivers toward use of MCM's, and the type of problems which may be resolved via MCM technology. The following key point should be assimilated: total cost is minimized when the best technological choice is made for packaging and interconnection.

There is an important drive to increase density in order to make the product smaller. Space restrictions exist in end-use environments ranging from aircraft to laptop computers and hand-held TVs. Another driver is the potential cost reduction available from reduction in material usage, or even from less real estate being employed, as may be the case in telephone exchanges. Table 1-1 shows MCM selection according to various market segments.

The heart of electronic performance capability is the integrated circuit and the increasing levels of integration being achieved. To capitalize on IC capability, we have already seen the move to surface mount packages with fine pitch I/O. For the same reason, direct attach, such as TAB, Flip-Chip, and Chip-On-Board, are also becoming important interconnection techniques.

Observations indicate that when single I/C chip mounting is used, a trend exists toward one package per 6.45 sq. cm. [1 sq. in] of substrate compared to 0.2 to 0.5 per 6.45 per sq. cm. [1 sq. in] for packaged I/Cs. Under these circumstances, the I/O count of the package becomes the major determinant of the interconnect density required. Figure 1-1 shows just how these individual IC chip I/Os are expected to increase.

While not totally separate from the density considerations, the issue of system speed presents some major challenges

Table 1-1 Characterization of Selected MCM Market Segments

Segment	Drivers	Personality	Price Elasticity
Electronic T&M	Precision	Industrial	Moderate
Logic Analysis	Precision, Miniaturization	Industrial	High
Global Positioning & Surveillance	Miniaturization Miniaturization	Military Commercial	Moderate High
Communications Satellites	Miniaturization	Commercial	Low
Telephone	Miniaturization	Commercial	Very High
Smart Sensors Weapons Systems Automotive Control Robotics	Miniaturization Miniaturization Miniaturization	Military Consumer Industrial	Moderate, Low Very High Moderate
Computing Systems Strategic/Tactical Mgmt. Info. Sys. Scientific Models	Speed Speed Speed	Military Commercial Industrial Academic Government	Low Moderate Low
Image Processing	Speed, Miniaturization	Industrial	Moderate
Engineering Workstations	Speed	Industrial	Very High
Laptops/Notebooks	Miniaturization	Consumer	Very High