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EXECUTIVE SUMMARY

Testing performed at the Electronics Manufacturing Productivity Facility
has shown that as technology advances and printed wiring assembly (PWA)
surface areas get smaller, surface residues will become harder to measure
accurately. On small surface areas, variables such as probe limitations, solvent
volume, and even carbon dioxide from the air will influence ionic contamination
measurements.

Most systems have what is termed a "deadband”. The resistivity probe
used in each system has a maximum measurement capability. For example, if
the maximum capability of the probe is 100 megohm-cm and the resistivity of
the solvent is actually 150 megohm-cm, the display will continue to read 100
megohm-cm. Any ionic residues that lower the resistance of the solvent from
150 to 100 megohms-cm will not be measured. Resistivity, however, is not
linear, and the amount of residue it takes to drop the resistivity from 150
megohm-cm to 140 megohm-cm is much less than the amount of residue it
takes to drop the resistivity from 50 megohm-cm to 40 megohm-cm. It has
been argued that the amount of ionic residue it takes to drop the resistivity
from the deadband to the visible range is insignificant in most cases. This
argument would depend on surface area as well as the need for accuracy. To
maintain accuracy, it is important that the operator of the cleanliness test
equipment not leave the system in a clean/filter mode for an extended period
of time. If the operator inadvertently deionized the solvent to a higher than
normal level, the solvent should be artificially contaminated and then recleaned
to an acceptable level.

Carbon dioxide can dissolve in water to form carbonic acid. This can
weakly ionize into H* and HCO, ions which can/will then affect ionic
readings. The presence of this ionic build-up during a static extraction will
contribute to the overall ionic reading. In most instances, such contributions
will be small, representing only a relatively small error in the measured results.
If, however, we are measuring a small sample in a large volume of extracting
solution, the effective total micrograms of NaCl represented by the CO, build-
up in solution will be divided by the smaller surface area of the sample giving
rise to a larger relative error in the reading expressed as pg/in“. Extractions
which are made for longer times will also show higher CO, errors, since more
CO, will dissolve in the longer period of exposure to the atmosphele Testing
indicated that the problem was not detectable for all of the static systems; and
there did not appear to be any correlation for spray versus no spray, or spray





