

IPC-TR-587

Conformal Coating Material and Application “State of the Industry” Assessment Report

Developed by the J-STD-001 Conformal Coating Material & Application Industry Assessment (5-22arr) of the Assembly & Joining Committee (5-20) of IPC

Users of this publication are encouraged to participate in the development of future revisions.

Contact:

IPC

Table of Contents

Abstract	1	Application Type – Vapor Deposition	36
Overview	1	Application Type – Syringe/Auto-Spray Combo	37
Project Resources	2	Material Comparison by Cure Method:	38
Acknowledgements	2	Air Cure (a.k.a. Room Temperature Cure)	38
Executive Summary	3	Heat Cure	39
Background	3	UV Cure (a.k.a. Ultraviolet Cure)	40
Design of Experiment (DOE) Parameters	6	Polymerized Cure (a.k.a. Vapor-phase Polymerization)	41
Cross-Sectioning Procedure	9	Air/Heat Combo Cure	42
Analysis Procedure	9	Air/Humidity Combo Cure (a.k.a. Air/Moisture Combo Cure)	43
Coating Application Methods	11	Material Comparison of Unique Application Methods (Brush, Dip, Vapor and Combo)	44
Manual Spray	11	Discussion	46
Aerosol Spraying	11	IPC-J-STD-001 Conformal Coating Thickness Ranges	46
Handheld Gun Spraying	11	Evaluating the Test Results	47
Automated Spray	12	Overall Conclusions	55
Vapor Deposited	13	Section 10 Test Results Relation to Other Studies	56
Dip Deposition	14	References	62
Manual Brush	14		
Manual Syringe and Automated Spray Combination	14	Appendix A IPC Conformal Coat Plotter Overview	63
Coating Cure Methods	15	Appendix B IPC Component Definitions	66
Cure Mechanism	15		
Cure Process Considerations	16	Figures	
Air Cure (a.k.a. Room Temperature Cure)	16		
Heat Cure	16	Figure 1 Global Solder Usage Trends [1]	4
UV Cure (a.k.a. Ultra-violet Cure)	16	Figure 2 Osterman Study Initial Inspection of Conformal Coating Thickness/Coverage (Clockwise: Acrylic, Silicone, Paraxylylene and Urethane)	5
Polymerized Cure (a.k.a. Vapor-phase Polymerization)	16	Figure 3 Osterman Test Coupons after Conditioning show evidence of thin whiskers (Left to Right: Acrylic, Silicone and Urethane)	6
Air/Heat Combo Cure	16	Figure 4 PC009 Test Vehicle	7
Air/Humidity Combination Cure (a.k.a. Air/ Moisture Combination Cure)	17	Figure 5 Representative Photographic Documentation of Conformally Coated Components Using Black Light Showing Minimal Coating Coverage	8
Moisture Cure	17	Figure 6 Metallographic Cross-Section Angles: Profile (left), End (right)	9
Air/Humidity Combination Cure	17	Figure 7 PC009 Board with Components Selected for Metallographic Analysis	10
Test Results	17	Figure 8 Representative Appendix B Graphic Showing SMR1206 Documenting Typical Measurement Areas	10
Material Comparison by Chemical Family	19	Figure 9 Hand Held Spray Gun Configuration	12
AR – Acrylic Resin Coating Materials	19	Figure 10 Automated Spray Configurations: Non-atomized Curtain Coater (left), Swirl Applicator (right)	13
UR – Urethane Resin Coating Materials	21	Figure 11 Parylene Conformal Coating System	13
ER – Epoxy Resin Coating Materials	26	Figure 12 Dip Conformal Coating System	14
SR – Silicone Resin Coating Materials	27		
XY – Paraxylylene (a.k.a. Parylene) Coating Materials	30		
Material Comparison by Application Method:	31		
Application Type – Manual Spray	31		
Application Type – Automated Spray	32		
Application Type – Dip Deposition	34		
Application Type – Manual Brush	35		

Figure 13	Conformal Coating Minimum Thickness Results Show that in all Cases the Coating Thickness was Non-Zero	19
Figure 14	Average of Min and Max AR Materials (mils)	20
Figure 15	Average of Min and Max AR Spray Applications (mils)	20
Figure 16	Average of Min and Max UR Materials (mils)	21
Figure 17	Average of Min and Max UR Auto Spray/Cure Applications (mils)	22
Figure 18	Average Min and Max UR Spray/Air+Heat Cure Applications (mils).....	23
Figure 19	Average of Min and Max UR Spray/UV Cure Applications (mils)	24
Figure 20	Average of Min and Max UR Automated Spray/UV Cure Applications (mils).....	25
Figure 21	Average of Min and Max ER Materials (mils)	26
Figure 22	Average of Min and Max SR Materials (mils)	27
Figure 23	Average of Min and Max SR Manual Spray/ Heat-Air-Humidity Cure Applications (mils)	28
Figure 24	Average of Min and Max SR Automated Spray/Heat-Air Cure Applications (mils).....	29
Figure 25	Average of Min and Max XY Material (mils)	30
Figure 26	Average of Min and Max Manual Spray/ Air-Heat-UV-Humidity Cure Applications (mils) ...	31
Figure 27	Average of Min and Max Automated Spray/ Air-Heat-UV Cure Applications (mils)	32
Figure 28	Average of Min and Max Automated Spray/ Heat-UV-Air Cure Applications (mils)	33
Figure 29	Average of Min and Max AR Dip/Air-Heat Cure Application (mils)	34
Figure 30	Average of Min and Max AR Manual Brush/ Heat Cure Application (mils).....	35
Figure 31	Average of Min and Max XY Vapor Deposition/ Polymerization (mils)	36
Figure 32	Average of Min and Max AR Manual Syringe-Auto-Spray/Air-Heat Cure Application (mils)	37
Figure 33	Average of Min and Max SR Manual and Automated Spray Applications (mils)	38
Figure 34	Average of Min and Max ER-SR-UR-AR Auto-Manual Spray/Brush Applications (mils)	39
Figure 35	Average of Min and Max UR Automated- Manual Spray Applications (mils)	40
Figure 36	Average of Min and Max Vapor Deposition Application (mils)	41
Figure 37	Average of Min and Max AR-UR Manual-Auto Spray/DIP/Combo Applications (mils)	42
Figure 38	Average of Min and Max SR Manual Spray Application (mils)	43
Figure 39	Average of Min and Max AR-XY Brush/DIP/ Combo/Vapor Deposition Application (mils)	44
Figure 40	Minimum Thickness AR-XY Brush/DIP/Combo/ Vapor Deposition Application (mils).....	45
Figure 41	Acrylic Sets 4 (blue line), 9 (red line), 10 (green line), 26 (purple line)	48
Figure 42	Acrylic Sets 4 (blue line), 9 (red line), 10 (green line)	49
Figure 43	Comparison of Acrylic Processes for PLCC68 Components	50
Figure 44	Maximums – Acrylics.....	51
Figure 45	Maximums for Acrylics with Set 26 (purple line) Removed	52
Figure 46	Minimums – Comparison of Acrylic (blue line) and Urethane (red line) Processes	53
Figure 47	Comparison of Acrylic (blue line) and Urethane (red line) – Maximums.....	54
Figure 48	Comparison of Acrylic and Urethane Processes for a PLCC68 Component.....	55
Figure 49	Tin Whisker Shorting on a SOIC16 Test Component	56
Figure 50	PERM Test Vehicle.....	58
Figure 51	SEM Assessment Illustrating Solder Wetting Coverage	59
Figure 52	Influence of Test Vehicle/Component Cleanliness on Tin Whisker Initiation [8]	60
Figure 53	An individual slotted test coupon photograph	60
Figure 54	Conformal Coating Plotter Overview Instruction Figure.....	65

Tables

Table 1	Investigation Coating / Deposition / Cure Combinations.....	8
Table 2	Test Board Numbers for Application/Material Combinations Included in the Investigation	11
Table 3	Test Board Numbers for Cure Method/Material Combinations Included in the Investigation	15
Table 3	Test Board Numbers for Cure Method/Material Combinations Included in the Investigation	15
Table 4	Investigation Application Method/Material Subset Distribution	18
Table 5	Cure Method/Material Subset Distribution	18
Table 6	Conformal Coating Classifications from IPC-CC-830	46
Table 7	Failures per Mitigation Type Results.....	56
Table 8	Woody/Fox Test Results [6]	57
Table 9	Self-mitigation probabilities with 90% confidence	59

Conformal Coating Material and Application

“State of the Industry” Assessment Report

David Hillman, Collins Aerospace

Doug Pauls, Collins Aerospace

Ross Wilcoxon, Collins Aerospace

Jason Keeping, Celestica

On behalf of the 5-22arr Task Group

Abstract

Conformal coatings are thin layers of polymers applied to the surfaces of electronic assemblies, primarily to protect the electronics from the operational environment. In most manufacturing specifications, conformal coating thickness is defined as the thickness of the final polymer film on a flat, unencumbered surface of the assembly. However, the conformal coating thickness on other assembly and component surfaces are usually uncharacterized. This report outlines an IPC study of major conformal coating types, coating application techniques, and coating cure technologies, characterizing the final film thickness on common component surfaces. The study included volunteers from numerous manufacturing companies who applied coating using vetted manufacturing processes for the production of high reliability electronics.

Overview

Conformal coating, for the purpose of this document, is defined as a thin, often transparent, polymeric coating that is applied to the surfaces of printed circuit assemblies (PCAs) to provide protection from the operational use environment. Typical coating thickness ranges from 12.5 μm [0.49 mil] to 200 μm [7.9 mil].

Processing characteristics and curing mechanisms vary with the coating chemistries used. The desired performance characteristics of a conformal coating depend on the application and should be considered when selecting a coating material and process. Conformal coatings are used for the following:

- Inhibit current leakage and short circuit due to humidity and contamination from service environment
- Inhibit corrosion
- Improve fatigue life of solder joints to leadless packages
- Inhibit arcing, corona and St. Elmo’s Fire in high voltage circuits
- Reduce damage from mechanical shock and vibration by providing mechanical support to small parts that cannot be secured by mechanical means.
- Provide some protection and mitigation against tin-whiskers and other conductive foreign objects or debris (FOD).

The beneficial effects of the coating depend on its properties, thickness and coverage. These characteristics in turn depend on the coating chemistry, application process and curing process.

The measurement of conformal coating thickness, *in situ*, has always been a tremendous challenge for the industry. Consequently, it has been an industry best manufacturing practice (BMP) is to measure conformal coating on a flat, unencumbered portion of the circuit assembly, or on a flat witness coupon processed at the same time as the circuit assembly. The J-STD-001 specification specifies thicknesses for conformal coating but those thickness ranges are for flat, unencumbered portions of the circuit assembly. It is a common misconception that the J-STD-001 specified thickness ranges apply to ALL surfaces of a circuit assembly.

The unanswered question is, when conformal coating is applied to flat, unencumbered surfaces of a printed circuit assembly such that it meets the thickness criteria of J-STD-001, what degree of conformal coating coverage can be expected on other critical surfaces, such as component leads, undersides of components, etc.?

In 2013, the J-STD-001 committee tasked a group of subject matter experts (SMEs) to answer this question by investigating conformal coating coverage in greater depth to determine the degree of conformal coating coverage that can be achieved by industry-standard conformal coating application/cure processes. Collins Aerospace led this massive effort, which involved a large number of volunteer sites.