New VDA 4: 2020, English version 2021 is avilable here.

 

PRICES include / exclude VAT
Homepage>BS Standards>19 TESTING>19.120 Particle size analysis. Sieving>21/30429441 DC BS ISO 20998-2. Measurement and characterization of particles by acoustic methods Part 2. Guidelines for linear theory
Sponsored link
immediate downloadReleased: 2021-07-20
21/30429441 DC BS ISO 20998-2. Measurement and characterization of particles by acoustic methods Part 2. Guidelines for linear theory

21/30429441 DC

BS ISO 20998-2. Measurement and characterization of particles by acoustic methods Part 2. Guidelines for linear theory

Format
Availability
Price and Currency
English Secure PDF
Immediate download
25.88 USD
English Hardcopy
In stock
25.88 USD
Standard number:21/30429441 DC
Pages:39
Released:2021-07-20
Status:Draft for Comment
DESCRIPTION

21/30429441 DC


This standard 21/30429441 DC BS ISO 20998-2. Measurement and characterization of particles by acoustic methods is classified in these ICS categories:
  • 19.120 Particle size analysis. Sieving

This standard describes ultrasonic attenuation spectroscopy methods for determining the size distributions of a particulate phase dispersed in a liquid at dilute concentrations, where the ultrasonic attenuation spectrum is a linear function of the particle volume fraction. In this regime particle-particle interactions are negligible. Colloids, dilute dispersions, and emulsions are within the scope of this standard. The typical particle size for such analysis ranges from 10 nm to 3 mm, although particles outside this range have also been successfully measured. For solid particles in suspension, size measurements can be made at concentrations typically ranging from 0,1 % by volume up to 5 % by volume, depending on the density contrast between the solid and liquid phases, the particle size, and the frequency range[ 9 ],[ 10 ]. For emulsions, measurements may be made at much higher concentrations. These ultrasonic methods can be used to monitor dynamic changes in the size distribution.

While it is possible to determine the particle size distribution from either the attenuation spectrum or phase velocity spectrum, the use of attenuation data alone is recommended. The relative variation in phase velocity due to changing particle size is small compared to the mean velocity, so it is often difficult to determine the phase velocity with a high degree of accuracy, particularly at ambient temperature. Likewise, the combined use of attenuation and velocity spectra to determine the particle size is not recommended. The presence of measurement errors (i.e. “noise”) in the magnitude and phase spectra can increase the ill-posed nature of the problem and reduce the stability of the inversion.


This product includes: