PRICES include / exclude VAT
Homepage>CSN Standards>01 GENERAL CLASS>0141 Uncertainty in measurement>TNI 01 4109-3.2 - Uncertainty of measurement - Part 3: Guide to the expression of uncertainty in measurement (Gum:1995) - Supplement 2: Extension to any number of output quantities
Released: 01.01.2024
TNI 01 4109-3.2 - Uncertainty of measurement - Part 3: Guide to the expression of uncertainty in measurement (Gum:1995) - Supplement 2: Extension to any number of output quantities

TNI 01 4109-3.2

Uncertainty of measurement - Part 3: Guide to the expression of uncertainty in measurement (Gum:1995) - Supplement 2: Extension to any number of output quantities

Format
Availability
Price and currency
English Hardcopy
In stock
117.78 USD
FREE Shipping
Number of Standard:TNI 01 4109-3.2
Category:014109
Pages:88
Released:01.01.2024
Catalog number:517746
DESCRIPTION

TNI 01 4109-3.2

Tento doplněk k pokynu k vyjádření nejistoty měření (GUM) se zabývá modely měření, které mají libovolný počet vstupních veličin (jako v GUM a GUM Doplněk 1) a libovolný počet výstupních veličin. Uvedené veličiny mohou být skutečné nebo komplexní. Pro zpracování takových modelů jsou zvažovány dva přístupy. Prvním přístupem je zobecnění rámce nejistoty GUM. Druhým je metoda Monte Carlo jako implementace šíření distribucí. Očekává se vhodné použití metody Monte Carlo poskytnout platné výsledky, když je použitelnost rámce nejistot GUM sporná. Přístup založený na rámci nejistoty GUM je použitelný, když jsou vstupní veličiny shrnuty (jako v GUM) z hlediska odhadů (například naměřených hodnot) a standardních nejistot spojených s těmito odhady a, je-li to vhodné, kovariancí spojených s páry pro tyto odhady. Jsou uvedeny vzorce a postupy pro získání odhadů výstupních veličin a pro vyhodnocení souvisejících standardních nejistot a kovariancí. Varianty vzorce a procedur se týkají modelů, pro které je výstupní veličina (a) vyjádřena přímo pomocí vstupních veličin jako funkce měření a (b) jsou získány řešením modelu měření, který implicitně propojuje vstupní a výstupní veličiny. Protějšky vzorce v GUM pro standardní nejistotu spojenou s odhadem výstupní veličiny by byly algebraicky těžkopádné. Takový vzorec je poskytnut v kompaktnější formě, pokud jde o matice a vektory, jejichž prvky obsahují rozptyly (kvadratické standardní nejistoty), kovariance a koeficienty citlivosti. Výhodou této formy prezentace je, že tyto vzorce lze snadno implementovat v mnoha počítačových jazycích a systémech, které podporují maticovou algebru. Metoda Monte Carlo je založena na (i) přiřazení rozdělení pravděpodobnosti vstupním veličinám v modelu měření [JCGM 101:2008 6], (ii) určení diskrétní reprezentace (společného) rozdělení pravděpodobnosti pro výstup. veličin a (iii) stanovení odhadů výstupních veličin z této diskrétní reprezentace a vyhodnocení souvisejících standardních nejistot a kovariancí. Tento přístup představuje zobecnění metody Monte Carlo v Doplňku 1 ke GUM, která se vztahuje na jedinou skalární výstupní veličinu. Pro předepsanou pravděpodobnost pokrytí lze tento doplněk použít k poskytnutí oblasti pokrytí pro výstupní veličiny vícerozměrného modelu, což je protějšek intervalu pokrytí pro jednu skalární výstupní veličinu. Poskytování oblastí pokrytí zahrnuje ty, které mají formu hyperelipsoidu nebo hyperobdélníku. Tyto oblasti pokrytí jsou vytvořeny z výsledků dvou zde popsaných přístupů. Je také uveden postup pro poskytnutí přiblížení k nejmenší oblasti pokrytí, získaný z výsledků poskytnutých metodou Monte Carlo. Tento doplněk obsahuje podrobné příklady pro ilustraci poskytovaných pokynů. Tento dokument je doplňkem GUM a má být používán ve spojení s ním a Doplňkem 1 GUM. Uživatelem tohoto Doplňku je GUM a jeho Doplňky. Viz také JCGM 104.
Original English text of CSN EN Standard.
The price of the Standard included all amendments and correcturs.